{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, BangPatterns, MagicHash, UnboxedTuples #-}
{-# OPTIONS_HADDOCK not-home #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.Word
-- Copyright   :  (c) The University of Glasgow, 1997-2002
-- License     :  see libraries/base/LICENSE
--
-- Maintainer  :  cvs-ghc@haskell.org
-- Stability   :  internal
-- Portability :  non-portable (GHC Extensions)
--
-- Sized unsigned integral types: 'Word', 'Word8', 'Word16', 'Word32', and
-- 'Word64'.
--
-----------------------------------------------------------------------------

#include "MachDeps.h"

module GHC.Word (
    Word(..), Word8(..), Word16(..), Word32(..), Word64(..),

    -- * Shifts
    uncheckedShiftL64#,
    uncheckedShiftRL64#,

    -- * Byte swapping
    byteSwap16,
    byteSwap32,
    byteSwap64,

    -- * Bit reversal
    bitReverse8,
    bitReverse16,
    bitReverse32,
    bitReverse64,

    -- * Equality operators
    -- | See GHC.Classes#matching_overloaded_methods_in_rules
    eqWord, neWord, gtWord, geWord, ltWord, leWord,
    eqWord8, neWord8, gtWord8, geWord8, ltWord8, leWord8,
    eqWord16, neWord16, gtWord16, geWord16, ltWord16, leWord16,
    eqWord32, neWord32, gtWord32, geWord32, ltWord32, leWord32,
    eqWord64, neWord64, gtWord64, geWord64, ltWord64, leWord64
    ) where

import Data.Maybe

import GHC.Prim
import GHC.Base

import GHC.Bits
import GHC.Enum
import GHC.Num
import GHC.Real
import GHC.Ix
import GHC.Show

------------------------------------------------------------------------
-- type Word8
------------------------------------------------------------------------

-- Word8 is represented in the same way as Word. Operations may assume
-- and must ensure that it holds only values from its logical range.

data {-# CTYPE "HsWord8" #-} Word8
    = W8# Word8#


-- ^ 8-bit unsigned integer type

-- See GHC.Classes#matching_overloaded_methods_in_rules
-- | @since 2.01
instance Eq Word8 where
    (==) = eqWord8
    (/=) = neWord8

eqWord8, neWord8 :: Word8 -> Word8 -> Bool
eqWord8 (W8# x) (W8# y) = isTrue# (x `eqWord8#` y)
neWord8 (W8# x) (W8# y) = isTrue# (x `neWord8#` y)
{-# INLINE [1] eqWord8 #-}
{-# INLINE [1] neWord8 #-}

-- | @since 2.01
instance Ord Word8 where
    (<)  = ltWord8
    (<=) = leWord8
    (>=) = geWord8
    (>)  = gtWord8

{-# INLINE [1] gtWord8 #-}
{-# INLINE [1] geWord8 #-}
{-# INLINE [1] ltWord8 #-}
{-# INLINE [1] leWord8 #-}
gtWord8, geWord8, ltWord8, leWord8 :: Word8 -> Word8 -> Bool
(W8# x) `gtWord8` (W8# y) = isTrue# (x `gtWord8#` y)
(W8# x) `geWord8` (W8# y) = isTrue# (x `geWord8#` y)
(W8# x) `ltWord8` (W8# y) = isTrue# (x `ltWord8#` y)
(W8# x) `leWord8` (W8# y) = isTrue# (x `leWord8#` y)

-- | @since 2.01
instance Show Word8 where
    showsPrec p x = showsPrec p (fromIntegral x :: Int)

-- | @since 2.01
instance Num Word8 where
    (W8# x#) + (W8# y#)    = W8# (x# `plusWord8#` y#)
    (W8# x#) - (W8# y#)    = W8# (x# `subWord8#` y#)
    (W8# x#) * (W8# y#)    = W8# (x# `timesWord8#` y#)
    negate (W8# x#)        = W8# (int8ToWord8# (negateInt8# (word8ToInt8# x#)))
    abs x                  = x
    signum 0               = 0
    signum _               = 1
    fromInteger i          = W8# (wordToWord8# (integerToWord# i))

-- | @since 2.01
instance Real Word8 where
    toRational x = toInteger x % 1

-- | @since 2.01
instance Enum Word8 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Word8"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Word8"
    toEnum i@(I# i#)
        | i >= 0 && i <= fromIntegral (maxBound::Word8)
                        = W8# (wordToWord8# (int2Word# i#))
        | otherwise     = toEnumError "Word8" i (minBound::Word8, maxBound::Word8)
    fromEnum (W8# x#)   = I# (word2Int# (word8ToWord# x#))
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFrom #-}
    enumFrom            = boundedEnumFrom
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromThen #-}
    enumFromThen        = boundedEnumFromThen

-- | @since 2.01
instance Integral Word8 where
    -- see Note [INLINE division wrappers] in GHC.Base
    {-# INLINE quot    #-}
    {-# INLINE rem     #-}
    {-# INLINE quotRem #-}
    {-# INLINE div     #-}
    {-# INLINE mod     #-}
    {-# INLINE divMod  #-}

    quot    (W8# x#) y@(W8# y#)
        | y /= 0                  = W8# (x# `quotWord8#` y#)
        | otherwise               = divZeroError
    rem     (W8# x#) y@(W8# y#)
        | y /= 0                  = W8# (x# `remWord8#` y#)
        | otherwise               = divZeroError
    quotRem (W8# x#) y@(W8# y#)
        | y /= 0                  = case x# `quotRemWord8#` y# of
                                      (# q, r #) -> (W8# q, W8# r)
        | otherwise               = divZeroError

    div    x y = quot x y
    mod    x y = rem x y
    divMod x y = quotRem x y

    toInteger (W8# x#)            = IS (word2Int# (word8ToWord# x#))

-- | @since 2.01
instance Bounded Word8 where
    minBound = 0
    maxBound = 0xFF

-- | @since 2.01
instance Ix Word8 where
    range (m,n)         = [m..n]
    unsafeIndex (m,_) i = fromIntegral (i - m)
    inRange (m,n) i     = m <= i && i <= n

-- | @since 2.01
instance Bits Word8 where
    {-# INLINE shift #-}
    {-# INLINE bit #-}
    {-# INLINE testBit #-}
    {-# INLINE popCount #-}

    (W8# x#) .&.   (W8# y#)   = W8# (x# `andWord8#` y#)
    (W8# x#) .|.   (W8# y#)   = W8# (x# `orWord8#`  y#)
    (W8# x#) `xor` (W8# y#)   = W8# (x# `xorWord8#` y#)
    complement (W8# x#)       = W8# (notWord8# x#)
    (W8# x#) `shift` (I# i#)
        | isTrue# (i# >=# 0#) = W8# (x# `shiftLWord8#` i#)
        | otherwise           = W8# (x# `shiftRLWord8#` negateInt# i#)
    (W8# x#) `shiftL`       (I# i#)
        | isTrue# (i# >=# 0#) = W8# (x# `shiftLWord8#` i#)
        | otherwise           = overflowError
    (W8# x#) `unsafeShiftL` (I# i#) =
        W8# (x# `uncheckedShiftLWord8#` i#)
    (W8# x#) `shiftR`       (I# i#)
        | isTrue# (i# >=# 0#) = W8# (x# `shiftRLWord8#` i#)
        | otherwise           = overflowError
    (W8# x#) `unsafeShiftR` (I# i#) = W8# (x# `uncheckedShiftRLWord8#` i#)
    (W8# x#) `rotate`       (I# i#)
        | isTrue# (i'# ==# 0#) = W8# x#
        | otherwise  = W8# ((x# `uncheckedShiftLWord8#` i'#) `orWord8#`
                            (x# `uncheckedShiftRLWord8#` (8# -# i'#)))
        where
        !i'# = word2Int# (int2Word# i# `and#` 7##)
    bitSizeMaybe i            = Just (finiteBitSize i)
    bitSize i                 = finiteBitSize i
    isSigned _                = False
    popCount (W8# x#)         = I# (word2Int# (popCnt8# (word8ToWord# x#)))
    bit i                     = bitDefault i
    testBit a i               = testBitDefault a i

-- | @since 4.6.0.0
instance FiniteBits Word8 where
    {-# INLINE countLeadingZeros #-}
    {-# INLINE countTrailingZeros #-}
    finiteBitSize _ = 8
    countLeadingZeros  (W8# x#) = I# (word2Int# (clz8# (word8ToWord# x#)))
    countTrailingZeros (W8# x#) = I# (word2Int# (ctz8# (word8ToWord# x#)))

{-# RULES
"properFraction/Float->(Word8,Float)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word8) n, y :: Float) }
"truncate/Float->Word8"
    truncate = (fromIntegral :: Int -> Word8) . (truncate :: Float -> Int)
"floor/Float->Word8"
    floor    = (fromIntegral :: Int -> Word8) . (floor :: Float -> Int)
"ceiling/Float->Word8"
    ceiling  = (fromIntegral :: Int -> Word8) . (ceiling :: Float -> Int)
"round/Float->Word8"
    round    = (fromIntegral :: Int -> Word8) . (round  :: Float -> Int)
  #-}

{-# RULES
"properFraction/Double->(Word8,Double)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word8) n, y :: Double) }
"truncate/Double->Word8"
    truncate = (fromIntegral :: Int -> Word8) . (truncate :: Double -> Int)
"floor/Double->Word8"
    floor    = (fromIntegral :: Int -> Word8) . (floor :: Double -> Int)
"ceiling/Double->Word8"
    ceiling  = (fromIntegral :: Int -> Word8) . (ceiling :: Double -> Int)
"round/Double->Word8"
    round    = (fromIntegral :: Int -> Word8) . (round  :: Double -> Int)
  #-}

------------------------------------------------------------------------
-- type Word16
------------------------------------------------------------------------

-- Word16 is represented in the same way as Word. Operations may assume
-- and must ensure that it holds only values from its logical range.

data {-# CTYPE "HsWord16" #-} Word16 = W16# Word16#
-- ^ 16-bit unsigned integer type

-- See GHC.Classes#matching_overloaded_methods_in_rules
-- | @since 2.01
instance Eq Word16 where
    (==) = eqWord16
    (/=) = neWord16

eqWord16, neWord16 :: Word16 -> Word16 -> Bool
eqWord16 (W16# x) (W16# y) = isTrue# (x `eqWord16#` y)
neWord16 (W16# x) (W16# y) = isTrue# (x `neWord16#` y)
{-# INLINE [1] eqWord16 #-}
{-# INLINE [1] neWord16 #-}

-- | @since 2.01
instance Ord Word16 where
    (<)  = ltWord16
    (<=) = leWord16
    (>=) = geWord16
    (>)  = gtWord16

{-# INLINE [1] gtWord16 #-}
{-# INLINE [1] geWord16 #-}
{-# INLINE [1] ltWord16 #-}
{-# INLINE [1] leWord16 #-}
gtWord16, geWord16, ltWord16, leWord16 :: Word16 -> Word16 -> Bool
(W16# x) `gtWord16` (W16# y) = isTrue# (x `gtWord16#` y)
(W16# x) `geWord16` (W16# y) = isTrue# (x `geWord16#` y)
(W16# x) `ltWord16` (W16# y) = isTrue# (x `ltWord16#` y)
(W16# x) `leWord16` (W16# y) = isTrue# (x `leWord16#` y)

-- | @since 2.01
instance Show Word16 where
    showsPrec p x = showsPrec p (fromIntegral x :: Int)

-- | @since 2.01
instance Num Word16 where
    (W16# x#) + (W16# y#)  = W16# (x# `plusWord16#` y#)
    (W16# x#) - (W16# y#)  = W16# (x# `subWord16#` y#)
    (W16# x#) * (W16# y#)  = W16# (x# `timesWord16#` y#)
    negate (W16# x#)       = W16# (int16ToWord16# (negateInt16# (word16ToInt16# x#)))
    abs x                  = x
    signum 0               = 0
    signum _               = 1
    fromInteger i          = W16# (wordToWord16# (integerToWord# i))

-- | @since 2.01
instance Real Word16 where
    toRational x = toInteger x % 1

-- | @since 2.01
instance Enum Word16 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Word16"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Word16"
    toEnum i@(I# i#)
        | i >= 0 && i <= fromIntegral (maxBound::Word16)
                        = W16# (wordToWord16# (int2Word# i#))
        | otherwise     = toEnumError "Word16" i (minBound::Word16, maxBound::Word16)
    fromEnum (W16# x#)  = I# (word2Int# (word16ToWord# x#))
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFrom #-}
    enumFrom            = boundedEnumFrom
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromThen #-}
    enumFromThen        = boundedEnumFromThen

-- | @since 2.01
instance Integral Word16 where
    -- see Note [INLINE division wrappers] in GHC.Base
    {-# INLINE quot    #-}
    {-# INLINE rem     #-}
    {-# INLINE quotRem #-}
    {-# INLINE div     #-}
    {-# INLINE mod     #-}
    {-# INLINE divMod  #-}

    quot    (W16# x#) y@(W16# y#)
        | y /= 0                    = W16# (x# `quotWord16#` y#)
        | otherwise                 = divZeroError
    rem     (W16# x#) y@(W16# y#)
        | y /= 0                    = W16# (x# `remWord16#` y#)
        | otherwise                 = divZeroError
    quotRem (W16# x#) y@(W16# y#)
        | y /= 0                    = case x# `quotRemWord16#` y# of
                                        (# q, r #) -> (W16# q, W16# r)
        | otherwise                 = divZeroError

    div    x y = quot x y
    mod    x y = rem x y
    divMod x y = quotRem x y

    toInteger (W16# x#)             = IS (word2Int# (word16ToWord# x#))

-- | @since 2.01
instance Bounded Word16 where
    minBound = 0
    maxBound = 0xFFFF

-- | @since 2.01
instance Ix Word16 where
    range (m,n)         = [m..n]
    unsafeIndex (m,_) i = fromIntegral (i - m)
    inRange (m,n) i     = m <= i && i <= n

-- | @since 2.01
instance Bits Word16 where
    {-# INLINE shift #-}
    {-# INLINE bit #-}
    {-# INLINE testBit #-}
    {-# INLINE popCount #-}

    (W16# x#) .&.   (W16# y#)  = W16# (x# `andWord16#` y#)
    (W16# x#) .|.   (W16# y#)  = W16# (x# `orWord16#`  y#)
    (W16# x#) `xor` (W16# y#)  = W16# (x# `xorWord16#` y#)
    complement (W16# x#)       = W16# (notWord16# x#)
    (W16# x#) `shift` (I# i#)
        | isTrue# (i# >=# 0#)  = W16# (x# `shiftLWord16#` i#)
        | otherwise            = W16# (x# `shiftRLWord16#` negateInt# i#)
    (W16# x#) `shiftL`       (I# i#)
        | isTrue# (i# >=# 0#)  = W16# (x# `shiftLWord16#` i#)
        | otherwise            = overflowError
    (W16# x#) `unsafeShiftL` (I# i#) =
        W16# (x# `uncheckedShiftLWord16#` i#)
    (W16# x#) `shiftR`       (I# i#)
        | isTrue# (i# >=# 0#)  = W16# (x# `shiftRLWord16#` i#)
        | otherwise            = overflowError
    (W16# x#) `unsafeShiftR` (I# i#) = W16# (x# `uncheckedShiftRLWord16#` i#)
    (W16# x#) `rotate`       (I# i#)
        | isTrue# (i'# ==# 0#) = W16# x#
        | otherwise  = W16# ((x# `uncheckedShiftLWord16#` i'#) `orWord16#`
                             (x# `uncheckedShiftRLWord16#` (16# -# i'#)))
        where
        !i'# = word2Int# (int2Word# i# `and#` 15##)
    bitSizeMaybe i            = Just (finiteBitSize i)
    bitSize i                 = finiteBitSize i
    isSigned _                = False
    popCount (W16# x#)        = I# (word2Int# (popCnt16# (word16ToWord# x#)))
    bit i                     = bitDefault i
    testBit a i               = testBitDefault a i

-- | @since 4.6.0.0
instance FiniteBits Word16 where
    {-# INLINE countLeadingZeros #-}
    {-# INLINE countTrailingZeros #-}
    finiteBitSize _ = 16
    countLeadingZeros  (W16# x#) = I# (word2Int# (clz16# (word16ToWord# x#)))
    countTrailingZeros (W16# x#) = I# (word2Int# (ctz16# (word16ToWord# x#)))

-- | Reverse order of bytes in 'Word16'.
--
-- @since 4.7.0.0
byteSwap16 :: Word16 -> Word16
byteSwap16 (W16# w#) = W16# (wordToWord16# (byteSwap16# (word16ToWord# w#)))

{-# RULES
"properFraction/Float->(Word16,Float)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word16) n, y :: Float) }
"truncate/Float->Word16"
    truncate = (fromIntegral :: Int -> Word16) . (truncate :: Float -> Int)
"floor/Float->Word16"
    floor    = (fromIntegral :: Int -> Word16) . (floor :: Float -> Int)
"ceiling/Float->Word16"
    ceiling  = (fromIntegral :: Int -> Word16) . (ceiling :: Float -> Int)
"round/Float->Word16"
    round    = (fromIntegral :: Int -> Word16) . (round  :: Float -> Int)
  #-}

{-# RULES
"properFraction/Double->(Word16,Double)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word16) n, y :: Double) }
"truncate/Double->Word16"
    truncate = (fromIntegral :: Int -> Word16) . (truncate :: Double -> Int)
"floor/Double->Word16"
    floor    = (fromIntegral :: Int -> Word16) . (floor :: Double -> Int)
"ceiling/Double->Word16"
    ceiling  = (fromIntegral :: Int -> Word16) . (ceiling :: Double -> Int)
"round/Double->Word16"
    round    = (fromIntegral :: Int -> Word16) . (round  :: Double -> Int)
  #-}

------------------------------------------------------------------------
-- type Word32
------------------------------------------------------------------------

-- Word32 is represented in the same way as Word.
#if WORD_SIZE_IN_BITS > 32
-- Operations may assume and must ensure that it holds only values
-- from its logical range.

-- We can use rewrite rules for the RealFrac methods

{-# RULES
"properFraction/Float->(Word32,Float)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word32) n, y :: Float) }
"truncate/Float->Word32"
    truncate = (fromIntegral :: Int -> Word32) . (truncate :: Float -> Int)
"floor/Float->Word32"
    floor    = (fromIntegral :: Int -> Word32) . (floor :: Float -> Int)
"ceiling/Float->Word32"
    ceiling  = (fromIntegral :: Int -> Word32) . (ceiling :: Float -> Int)
"round/Float->Word32"
    round    = (fromIntegral :: Int -> Word32) . (round  :: Float -> Int)
  #-}

{-# RULES
"properFraction/Double->(Word32,Double)"
    properFraction = \x ->
                      case properFraction x of {
                        (n, y) -> ((fromIntegral :: Int -> Word32) n, y :: Double) }
"truncate/Double->Word32"
    truncate = (fromIntegral :: Int -> Word32) . (truncate :: Double -> Int)
"floor/Double->Word32"
    floor    = (fromIntegral :: Int -> Word32) . (floor :: Double -> Int)
"ceiling/Double->Word32"
    ceiling  = (fromIntegral :: Int -> Word32) . (ceiling :: Double -> Int)
"round/Double->Word32"
    round    = (fromIntegral :: Int -> Word32) . (round  :: Double -> Int)
  #-}

#endif

data {-# CTYPE "HsWord32" #-} Word32 = W32# Word32#
-- ^ 32-bit unsigned integer type

-- See GHC.Classes#matching_overloaded_methods_in_rules
-- | @since 2.01
instance Eq Word32 where
    (==) = eqWord32
    (/=) = neWord32

eqWord32, neWord32 :: Word32 -> Word32 -> Bool
eqWord32 (W32# x) (W32# y) = isTrue# (x `eqWord32#` y)
neWord32 (W32# x) (W32# y) = isTrue# (x `neWord32#` y)
{-# INLINE [1] eqWord32 #-}
{-# INLINE [1] neWord32 #-}

-- | @since 2.01
instance Ord Word32 where
    (<)  = ltWord32
    (<=) = leWord32
    (>=) = geWord32
    (>)  = gtWord32

{-# INLINE [1] gtWord32 #-}
{-# INLINE [1] geWord32 #-}
{-# INLINE [1] ltWord32 #-}
{-# INLINE [1] leWord32 #-}
gtWord32, geWord32, ltWord32, leWord32 :: Word32 -> Word32 -> Bool
(W32# x) `gtWord32` (W32# y) = isTrue# (x `gtWord32#` y)
(W32# x) `geWord32` (W32# y) = isTrue# (x `geWord32#` y)
(W32# x) `ltWord32` (W32# y) = isTrue# (x `ltWord32#` y)
(W32# x) `leWord32` (W32# y) = isTrue# (x `leWord32#` y)

-- | @since 2.01
instance Num Word32 where
    (W32# x#) + (W32# y#)  = W32# (x# `plusWord32#` y#)
    (W32# x#) - (W32# y#)  = W32# (x# `subWord32#` y#)
    (W32# x#) * (W32# y#)  = W32# (x# `timesWord32#` y#)
    negate (W32# x#)       = W32# (int32ToWord32# (negateInt32# (word32ToInt32# x#)))
    abs x                  = x
    signum 0               = 0
    signum _               = 1
    fromInteger i          = W32# (wordToWord32# (integerToWord# i))

-- | @since 2.01
instance Enum Word32 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Word32"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Word32"
    toEnum i@(I# i#)
        | i >= 0
#if WORD_SIZE_IN_BITS > 32
          && i <= fromIntegral (maxBound::Word32)
#endif
                        = W32# (wordToWord32# (int2Word# i#))
        | otherwise     = toEnumError "Word32" i (minBound::Word32, maxBound::Word32)
#if WORD_SIZE_IN_BITS == 32
    fromEnum x@(W32# x#)
        | x <= fromIntegral (maxBound::Int)
                        = I# (word2Int# (word32ToWord# x#))
        | otherwise     = fromEnumError "Word32" x
    enumFrom            = integralEnumFrom
    enumFromThen        = integralEnumFromThen
    enumFromTo          = integralEnumFromTo
    enumFromThenTo      = integralEnumFromThenTo
#else
    fromEnum (W32# x#)  = I# (word2Int# (word32ToWord# x#))
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFrom #-}
    enumFrom            = boundedEnumFrom
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromThen #-}
    enumFromThen        = boundedEnumFromThen
#endif

-- | @since 2.01
instance Integral Word32 where
    -- see Note [INLINE division wrappers] in GHC.Base
    {-# INLINE quot    #-}
    {-# INLINE rem     #-}
    {-# INLINE quotRem #-}
    {-# INLINE div     #-}
    {-# INLINE mod     #-}
    {-# INLINE divMod  #-}

    quot    (W32# x#) y@(W32# y#)
        | y /= 0                    = W32# (x# `quotWord32#` y#)
        | otherwise                 = divZeroError
    rem     (W32# x#) y@(W32# y#)
        | y /= 0                    = W32# (x# `remWord32#` y#)
        | otherwise                 = divZeroError
    quotRem (W32# x#) y@(W32# y#)
        | y /= 0                    = case x# `quotRemWord32#` y# of
                                        (# q, r #) -> (W32# q, W32# r)
        | otherwise                 = divZeroError

    div    x y = quot x y
    mod    x y = rem x y
    divMod x y = quotRem x y

    toInteger (W32# x#)             = integerFromWord# (word32ToWord# x#)

-- | @since 2.01
instance Bits Word32 where
    {-# INLINE shift #-}
    {-# INLINE bit #-}
    {-# INLINE testBit #-}
    {-# INLINE popCount #-}

    (W32# x#) .&.   (W32# y#)  = W32# (x# `andWord32#` y#)
    (W32# x#) .|.   (W32# y#)  = W32# (x# `orWord32#`  y#)
    (W32# x#) `xor` (W32# y#)  = W32# (x# `xorWord32#` y#)
    complement (W32# x#)       = W32# (notWord32# x#)
    (W32# x#) `shift` (I# i#)
        | isTrue# (i# >=# 0#)  = W32# (x# `shiftLWord32#` i#)
        | otherwise            = W32# (x# `shiftRLWord32#` negateInt# i#)
    (W32# x#) `shiftL`       (I# i#)
        | isTrue# (i# >=# 0#)  = W32# (x# `shiftLWord32#` i#)
        | otherwise            = overflowError
    (W32# x#) `unsafeShiftL` (I# i#) =
        W32# (x# `uncheckedShiftLWord32#` i#)
    (W32# x#) `shiftR`       (I# i#)
        | isTrue# (i# >=# 0#)  = W32# (x# `shiftRLWord32#` i#)
        | otherwise            = overflowError
    (W32# x#) `unsafeShiftR` (I# i#) = W32# (x# `uncheckedShiftRLWord32#` i#)
    (W32# x#) `rotate`       (I# i#)
        | isTrue# (i'# ==# 0#) = W32# x#
        | otherwise   = W32# ((x# `uncheckedShiftLWord32#` i'#) `orWord32#`
                              (x# `uncheckedShiftRLWord32#` (32# -# i'#)))
        where
        !i'# = word2Int# (int2Word# i# `and#` 31##)
    bitSizeMaybe i            = Just (finiteBitSize i)
    bitSize i                 = finiteBitSize i
    isSigned _                = False
    popCount (W32# x#)        = I# (word2Int# (popCnt32# (word32ToWord# x#)))
    bit i                     = bitDefault i
    testBit a i               = testBitDefault a i

-- | @since 4.6.0.0
instance FiniteBits Word32 where
    {-# INLINE countLeadingZeros #-}
    {-# INLINE countTrailingZeros #-}
    finiteBitSize _ = 32
    countLeadingZeros  (W32# x#) = I# (word2Int# (clz32# (word32ToWord# x#)))
    countTrailingZeros (W32# x#) = I# (word2Int# (ctz32# (word32ToWord# x#)))

-- | @since 2.01
instance Show Word32 where
#if WORD_SIZE_IN_BITS < 33
    showsPrec p x = showsPrec p (toInteger x)
#else
    showsPrec p x = showsPrec p (fromIntegral x :: Int)
#endif


-- | @since 2.01
instance Real Word32 where
    toRational x = toInteger x % 1

-- | @since 2.01
instance Bounded Word32 where
    minBound = 0
    maxBound = 0xFFFFFFFF

-- | @since 2.01
instance Ix Word32 where
    range (m,n)         = [m..n]
    unsafeIndex (m,_) i = fromIntegral (i - m)
    inRange (m,n) i     = m <= i && i <= n

-- | Reverse order of bytes in 'Word32'.
--
-- @since 4.7.0.0
byteSwap32 :: Word32 -> Word32
byteSwap32 (W32# w#) = W32# (wordToWord32# (byteSwap32# (word32ToWord# w#)))

------------------------------------------------------------------------
-- type Word64
------------------------------------------------------------------------

data {-# CTYPE "HsWord64" #-} Word64 = W64# Word64#
-- ^ 64-bit unsigned integer type

-- See GHC.Classes#matching_overloaded_methods_in_rules
-- | @since 2.01
instance Eq Word64 where
    (==) = eqWord64
    (/=) = neWord64

eqWord64, neWord64 :: Word64 -> Word64 -> Bool
eqWord64 (W64# x) (W64# y) = isTrue# (x `eqWord64#` y)
neWord64 (W64# x) (W64# y) = isTrue# (x `neWord64#` y)
{-# INLINE [1] eqWord64 #-}
{-# INLINE [1] neWord64 #-}

-- | @since 2.01
instance Ord Word64 where
    (<)  = ltWord64
    (<=) = leWord64
    (>=) = geWord64
    (>)  = gtWord64

{-# INLINE [1] gtWord64 #-}
{-# INLINE [1] geWord64 #-}
{-# INLINE [1] ltWord64 #-}
{-# INLINE [1] leWord64 #-}
gtWord64, geWord64, ltWord64, leWord64 :: Word64 -> Word64 -> Bool
(W64# x) `gtWord64` (W64# y) = isTrue# (x `gtWord64#` y)
(W64# x) `geWord64` (W64# y) = isTrue# (x `geWord64#` y)
(W64# x) `ltWord64` (W64# y) = isTrue# (x `ltWord64#` y)
(W64# x) `leWord64` (W64# y) = isTrue# (x `leWord64#` y)

-- | @since 2.01
instance Num Word64 where
    (W64# x#) + (W64# y#)  = W64# (x# `plusWord64#` y#)
    (W64# x#) - (W64# y#)  = W64# (x# `subWord64#` y#)
    (W64# x#) * (W64# y#)  = W64# (x# `timesWord64#` y#)
    negate (W64# x#)       = W64# (int64ToWord64# (negateInt64# (word64ToInt64# x#)))
    abs x                  = x
    signum 0               = 0
    signum _               = 1
    fromInteger i          = W64# (integerToWord64# i)

-- | @since 2.01
instance Enum Word64 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Word64"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Word64"
    toEnum i@(I# i#)
        | i >= 0        = W64# (wordToWord64# (int2Word# i#))
        | otherwise     = toEnumError "Word64" i (minBound::Word64, maxBound::Word64)
    fromEnum x@(W64# x#)
        | x <= fromIntegral (maxBound::Int)
                        = I# (word2Int# (word64ToWord# x#))
        | otherwise     = fromEnumError "Word64" x
#if WORD_SIZE_IN_BITS < 64
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFrom #-}
    enumFrom            = integralEnumFrom
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromThen #-}
    enumFromThen        = integralEnumFromThen
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromTo #-}
    enumFromTo          = integralEnumFromTo
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromThenTo #-}
    enumFromThenTo      = integralEnumFromThenTo
#else
    -- use Word's Enum as it has better support for fusion. We can't use
    -- `boundedEnumFrom` and `boundedEnumFromThen` -- which use Int's Enum
    -- instance -- because Word64 isn't compatible with Int/Int64's domain.
    --
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFrom #-}
    enumFrom x          = map fromIntegral (enumFrom (fromIntegral x :: Word))
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromThen #-}
    enumFromThen x y    = map fromIntegral (enumFromThen (fromIntegral x :: Word) (fromIntegral y))
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromTo #-}
    enumFromTo x y      = map fromIntegral (enumFromTo (fromIntegral x :: Word) (fromIntegral y))
    -- See Note [Stable Unfolding for list producers] in GHC.Enum
    {-# INLINE enumFromThenTo #-}
    enumFromThenTo x y z = map fromIntegral (enumFromThenTo (fromIntegral x :: Word) (fromIntegral y) (fromIntegral z))
#endif

-- | @since 2.01
instance Integral Word64 where
    -- see Note [INLINE division wrappers] in GHC.Base
    {-# INLINE quot    #-}
    {-# INLINE rem     #-}
    {-# INLINE quotRem #-}
    {-# INLINE div     #-}
    {-# INLINE mod     #-}
    {-# INLINE divMod  #-}

    quot    (W64# x#) y@(W64# y#)
        | y /= 0                    = W64# (x# `quotWord64#` y#)
        | otherwise                 = divZeroError
    rem     (W64# x#) y@(W64# y#)
        | y /= 0                    = W64# (x# `remWord64#` y#)
        | otherwise                 = divZeroError
    quotRem (W64# x#) y@(W64# y#)
#if WORD_SIZE_IN_BITS < 64
        | y /= 0                    = (W64# (x# `quotWord64#` y#), W64# (x# `remWord64#` y#))
#else
        -- we don't have a `quotRemWord64#` primitive yet.
        | y /= 0                    = case quotRemWord# (word64ToWord# x#) (word64ToWord# y#) of
                                        (# q, r #) -> (W64# (wordToWord64# q),  W64# (wordToWord64# r))
#endif
        | otherwise                 = divZeroError

    div    x y = quot x y
    mod    x y = rem x y
    divMod x y = quotRem x y

    toInteger (W64# x#)             = integerFromWord64# x#

-- | @since 2.01
instance Bits Word64 where
    {-# INLINE shift #-}
    {-# INLINE bit #-}
    {-# INLINE testBit #-}
    {-# INLINE popCount #-}

    (W64# x#) .&.   (W64# y#)  = W64# (x# `and64#` y#)
    (W64# x#) .|.   (W64# y#)  = W64# (x# `or64#`  y#)
    (W64# x#) `xor` (W64# y#)  = W64# (x# `xor64#` y#)
    complement (W64# x#)       = W64# (not64# x#)
    (W64# x#) `shift` (I# i#)
        | isTrue# (i# >=# 0#)  = W64# (x# `shiftLWord64#` i#)
        | otherwise            = W64# (x# `shiftRLWord64#` negateInt# i#)
    (W64# x#) `shiftL`       (I# i#)
        | isTrue# (i# >=# 0#)  = W64# (x# `shiftLWord64#` i#)
        | otherwise            = overflowError
    (W64# x#) `unsafeShiftL` (I# i#) = W64# (x# `uncheckedShiftL64#` i#)
    (W64# x#) `shiftR`       (I# i#)
        | isTrue# (i# >=# 0#)  = W64# (x# `shiftRLWord64#` i#)
        | otherwise            = overflowError
    (W64# x#) `unsafeShiftR` (I# i#) = W64# (x# `uncheckedShiftRL64#` i#)
    (W64# x#) `rotate` (I# i#)
        | isTrue# (i'# ==# 0#) = W64# x#
        | otherwise            = W64# ((x# `uncheckedShiftL64#` i'#) `or64#`
                                       (x# `uncheckedShiftRL64#` (64# -# i'#)))
        where
        !i'# = word2Int# (int2Word# i# `and#` 63##)
    bitSizeMaybe i            = Just (finiteBitSize i)
    bitSize i                 = finiteBitSize i
    isSigned _                = False
    popCount (W64# x#)        = I# (word2Int# (popCnt64# x#))
    bit i                     = bitDefault i
    testBit a i               = testBitDefault a i

-- | @since 4.6.0.0
instance FiniteBits Word64 where
    {-# INLINE countLeadingZeros #-}
    {-# INLINE countTrailingZeros #-}
    finiteBitSize _ = 64
    countLeadingZeros  (W64# x#) = I# (word2Int# (clz64# x#))
    countTrailingZeros (W64# x#) = I# (word2Int# (ctz64# x#))

-- | @since 2.01
instance Show Word64 where
    showsPrec p x = showsPrec p (toInteger x)

-- | @since 2.01
instance Real Word64 where
    toRational x = toInteger x % 1

-- | @since 2.01
instance Bounded Word64 where
    minBound = 0
    maxBound = 0xFFFFFFFFFFFFFFFF

-- | @since 2.01
instance Ix Word64 where
    range (m,n)         = [m..n]
    unsafeIndex (m,_) i = fromIntegral (i - m)
    inRange (m,n) i     = m <= i && i <= n

-- | Reverse order of bytes in 'Word64'.
--
-- @since 4.7.0.0
byteSwap64 :: Word64 -> Word64
byteSwap64 (W64# w#) = W64# (byteSwap64# w#)

-- | Reverse the order of the bits in a 'Word8'.
--
-- @since 4.14.0.0
bitReverse8 :: Word8 -> Word8
bitReverse8 (W8# w#) = W8# (wordToWord8# (bitReverse8# (word8ToWord# w#)))

-- | Reverse the order of the bits in a 'Word16'.
--
-- @since 4.14.0.0
bitReverse16 :: Word16 -> Word16
bitReverse16 (W16# w#) = W16# (wordToWord16# (bitReverse16# (word16ToWord# w#)))

-- | Reverse the order of the bits in a 'Word32'.
--
-- @since 4.14.0.0
bitReverse32 :: Word32 -> Word32
bitReverse32 (W32# w#) = W32# (wordToWord32# (bitReverse32# (word32ToWord# w#)))

-- | Reverse the order of the bits in a 'Word64'.
--
-- @since 4.14.0.0
bitReverse64 :: Word64 -> Word64
bitReverse64 (W64# w#) = W64# (bitReverse64# w#)

-------------------------------------------------------------------------------

-- unchecked shift primops may be lowered into C shift operations which have
-- unspecified behaviour if the amount of bits to shift is greater or equal to the word
-- size in bits.
-- The following safe shift operations wrap unchecked primops to take this into
-- account: 0 is consistently returned when the shift amount is too big.

shiftRLWord8# :: Word8# -> Int# -> Word8#
a `shiftRLWord8#` b = uncheckedShiftRLWord8# a b
                       `andWord8#` wordToWord8# (int2Word# (shift_mask 8# b))

shiftRLWord16# :: Word16# -> Int# -> Word16#
a `shiftRLWord16#` b = uncheckedShiftRLWord16# a b
                       `andWord16#` wordToWord16# (int2Word# (shift_mask 16# b))

shiftRLWord32# :: Word32# -> Int# -> Word32#
a `shiftRLWord32#` b = uncheckedShiftRLWord32# a b
                       `andWord32#` wordToWord32# (int2Word# (shift_mask 32# b))

shiftRLWord64# :: Word64# -> Int# -> Word64#
a `shiftRLWord64#` b = uncheckedShiftRL64# a b
                    `and64#` int64ToWord64# (intToInt64# (shift_mask 64# b))

shiftLWord8# :: Word8# -> Int# -> Word8#
a `shiftLWord8#` b = uncheckedShiftLWord8# a b
                      `andWord8#` wordToWord8# (int2Word# (shift_mask 8# b))

shiftLWord16# :: Word16# -> Int# -> Word16#
a `shiftLWord16#` b = uncheckedShiftLWord16# a b
                       `andWord16#` wordToWord16# (int2Word# (shift_mask 16# b))

shiftLWord32# :: Word32# -> Int# -> Word32#
a `shiftLWord32#` b = uncheckedShiftLWord32# a b
                       `andWord32#` wordToWord32# (int2Word# (shift_mask 32# b))

shiftLWord64# :: Word64# -> Int# -> Word64#
a `shiftLWord64#` b  = uncheckedShiftL64# a b
                    `and64#` int64ToWord64# (intToInt64# (shift_mask 64# b))