Safe Haskell | None |
---|---|
Language | GHC2021 |
Boolean formulas without quantifiers and without negation. Such a formula consists of variables, conjunctions (and), and disjunctions (or).
This module is used to represent minimal complete definitions for classes.
Documentation
bfMap :: forall (p :: Pass) (p' :: Pass). (LIdP (GhcPass p) -> LIdP (GhcPass p')) -> BooleanFormula (GhcPass p) -> BooleanFormula (GhcPass p') Source #
bfTraverse :: forall f (p :: Pass) (p' :: Pass). Applicative f => (LIdP (GhcPass p) -> f (LIdP (GhcPass p'))) -> BooleanFormula (GhcPass p) -> f (BooleanFormula (GhcPass p')) Source #
eval :: forall (p :: Pass). (LIdP (GhcPass p) -> Bool) -> BooleanFormula (GhcPass p) -> Bool Source #
simplify :: forall (p :: Pass). Eq (LIdP (GhcPass p)) => (LIdP (GhcPass p) -> Maybe Bool) -> BooleanFormula (GhcPass p) -> BooleanFormula (GhcPass p) Source #
isUnsatisfied :: forall (p :: Pass). Eq (LIdP (GhcPass p)) => (LIdP (GhcPass p) -> Bool) -> BooleanFormula (GhcPass p) -> Maybe (BooleanFormula (GhcPass p)) Source #
implies :: forall (p :: Pass). Uniquable (IdP (GhcPass p)) => BooleanFormula (GhcPass p) -> BooleanFormula (GhcPass p) -> Bool Source #
impliesAtom :: forall (p :: Pass). Eq (IdP (GhcPass p)) => BooleanFormula (GhcPass p) -> LIdP (GhcPass p) -> Bool Source #
pprBooleanFormula :: forall (p :: Pass). (Rational -> LIdP (GhcPass p) -> SDoc) -> Rational -> BooleanFormula (GhcPass p) -> SDoc Source #
pprBooleanFormulaNice :: forall (p :: Pass). Outputable (LIdP (GhcPass p)) => BooleanFormula (GhcPass p) -> SDoc Source #
pprBooleanFormulaNormal :: forall (p :: Pass). OutputableBndrId p => BooleanFormula (GhcPass p) -> SDoc Source #
Orphan instances
OutputableBndrId p => Outputable (BooleanFormula (GhcPass p)) Source # | |