Safe Haskell | None |
---|---|
Language | GHC2021 |
Boolean formulas without quantifiers and without negation. Such a formula consists of variables, conjunctions (and), and disjunctions (or).
This module is used to represent minimal complete definitions for classes.
Documentation
data BooleanFormula a Source #
Var a | |
And [LBooleanFormula a] | |
Or [LBooleanFormula a] | |
Parens (LBooleanFormula a) |
Instances
type LBooleanFormula a = LocatedL (BooleanFormula a) Source #
mkFalse :: BooleanFormula a Source #
mkTrue :: BooleanFormula a Source #
mkAnd :: Eq a => [LBooleanFormula a] -> BooleanFormula a Source #
mkOr :: Eq a => [LBooleanFormula a] -> BooleanFormula a Source #
mkVar :: a -> BooleanFormula a Source #
isFalse :: BooleanFormula a -> Bool Source #
isTrue :: BooleanFormula a -> Bool Source #
simplify :: Eq a => (a -> Maybe Bool) -> BooleanFormula a -> BooleanFormula a Source #
isUnsatisfied :: Eq a => (a -> Bool) -> BooleanFormula a -> Maybe (BooleanFormula a) Source #
implies :: Uniquable a => BooleanFormula a -> BooleanFormula a -> Bool Source #
impliesAtom :: Eq a => BooleanFormula a -> a -> Bool Source #
pprBooleanFormula :: (Rational -> a -> SDoc) -> Rational -> BooleanFormula a -> SDoc Source #
pprBooleanFormulaNice :: Outputable a => BooleanFormula a -> SDoc Source #