Copyright | (c) The University of Glasgow 1994-2002 Portions obtained from hbc (c) Lennart Augusstson |
---|---|
License | see libraries/base/LICENSE |
Maintainer | ghc-devs@haskell.org |
Stability | internal |
Portability | non-portable (GHC Extensions) |
Safe Haskell | Safe |
Language | Haskell2010 |
Synopsis
- class Fractional a => Floating a where
- pi :: a
- exp :: a -> a
- log :: a -> a
- sqrt :: a -> a
- (**) :: a -> a -> a
- logBase :: a -> a -> a
- sin :: a -> a
- cos :: a -> a
- tan :: a -> a
- asin :: a -> a
- acos :: a -> a
- atan :: a -> a
- sinh :: a -> a
- cosh :: a -> a
- tanh :: a -> a
- asinh :: a -> a
- acosh :: a -> a
- atanh :: a -> a
- log1p :: a -> a
- expm1 :: a -> a
- log1pexp :: a -> a
- log1mexp :: a -> a
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- data Float = F# Float#
- data Float# :: TYPE 'FloatRep
- float2Int :: Float -> Int
- int2Float :: Int -> Float
- word2Float :: Word -> Float
- integerToFloat# :: Integer -> Float#
- naturalToFloat# :: Natural -> Float#
- rationalToFloat :: Integer -> Integer -> Float
- castWord32ToFloat :: Word32 -> Float
- castFloatToWord32 :: Float -> Word32
- castWord32ToFloat# :: Word32# -> Float#
- castFloatToWord32# :: Float# -> Word32#
- float2Double :: Float -> Double
- floorFloat :: Integral b => Float -> b
- ceilingFloat :: Integral b => Float -> b
- truncateFloat :: Integral b => Float -> b
- roundFloat :: Integral b => Float -> b
- properFractionFloat :: Integral b => Float -> (b, Float)
- isFloatDenormalized :: Float -> Int
- isFloatFinite :: Float -> Int
- isFloatInfinite :: Float -> Int
- isFloatNaN :: Float -> Int
- isFloatNegativeZero :: Float -> Int
- gtFloat :: Float -> Float -> Bool
- geFloat :: Float -> Float -> Bool
- leFloat :: Float -> Float -> Bool
- ltFloat :: Float -> Float -> Bool
- plusFloat :: Float -> Float -> Float
- minusFloat :: Float -> Float -> Float
- timesFloat :: Float -> Float -> Float
- divideFloat :: Float -> Float -> Float
- negateFloat :: Float -> Float
- expFloat :: Float -> Float
- expm1Float :: Float -> Float
- logFloat :: Float -> Float
- log1pFloat :: Float -> Float
- sqrtFloat :: Float -> Float
- fabsFloat :: Float -> Float
- sinFloat :: Float -> Float
- cosFloat :: Float -> Float
- tanFloat :: Float -> Float
- asinFloat :: Float -> Float
- acosFloat :: Float -> Float
- atanFloat :: Float -> Float
- sinhFloat :: Float -> Float
- coshFloat :: Float -> Float
- tanhFloat :: Float -> Float
- asinhFloat :: Float -> Float
- acoshFloat :: Float -> Float
- atanhFloat :: Float -> Float
- data Double = D# Double#
- data Double# :: TYPE 'DoubleRep
- double2Int :: Double -> Int
- int2Double :: Int -> Double
- word2Double :: Word -> Double
- integerToDouble# :: Integer -> Double#
- naturalToDouble# :: Natural -> Double#
- rationalToDouble :: Integer -> Integer -> Double
- castWord64ToDouble :: Word64 -> Double
- castDoubleToWord64 :: Double -> Word64
- castWord64ToDouble# :: Word64# -> Double#
- castDoubleToWord64# :: Double# -> Word64#
- double2Float :: Double -> Float
- floorDouble :: Integral b => Double -> b
- ceilingDouble :: Integral b => Double -> b
- truncateDouble :: Integral b => Double -> b
- roundDouble :: Integral b => Double -> b
- properFractionDouble :: Integral b => Double -> (b, Double)
- isDoubleDenormalized :: Double -> Int
- isDoubleFinite :: Double -> Int
- isDoubleInfinite :: Double -> Int
- isDoubleNaN :: Double -> Int
- isDoubleNegativeZero :: Double -> Int
- gtDouble :: Double -> Double -> Bool
- geDouble :: Double -> Double -> Bool
- leDouble :: Double -> Double -> Bool
- ltDouble :: Double -> Double -> Bool
- plusDouble :: Double -> Double -> Double
- minusDouble :: Double -> Double -> Double
- timesDouble :: Double -> Double -> Double
- divideDouble :: Double -> Double -> Double
- negateDouble :: Double -> Double
- expDouble :: Double -> Double
- expm1Double :: Double -> Double
- logDouble :: Double -> Double
- log1pDouble :: Double -> Double
- sqrtDouble :: Double -> Double
- fabsDouble :: Double -> Double
- sinDouble :: Double -> Double
- cosDouble :: Double -> Double
- tanDouble :: Double -> Double
- asinDouble :: Double -> Double
- acosDouble :: Double -> Double
- atanDouble :: Double -> Double
- sinhDouble :: Double -> Double
- coshDouble :: Double -> Double
- tanhDouble :: Double -> Double
- asinhDouble :: Double -> Double
- acoshDouble :: Double -> Double
- atanhDouble :: Double -> Double
- showFloat :: RealFloat a => a -> ShowS
- data FFFormat
- formatRealFloat :: RealFloat a => FFFormat -> Maybe Int -> a -> String
- formatRealFloatAlt :: RealFloat a => FFFormat -> Maybe Int -> Bool -> a -> String
- showSignedFloat :: RealFloat a => (a -> ShowS) -> Int -> a -> ShowS
- log1mexpOrd :: (Ord a, Floating a) => a -> a
- roundTo :: Int -> Int -> [Int] -> (Int, [Int])
- floatToDigits :: RealFloat a => Integer -> a -> ([Int], Int)
- integerToBinaryFloat' :: RealFloat a => Integer -> a
- fromRat :: RealFloat a => Rational -> a
- fromRat' :: RealFloat a => Rational -> a
- roundingMode# :: Integer -> Int# -> Int#
- eqFloat :: Float -> Float -> Bool
- eqDouble :: Double -> Double -> Bool
- clamp :: Int -> Int -> Int
- expt :: Integer -> Int -> Integer
- expts :: Array Int Integer
- expts10 :: Array Int Integer
- fromRat'' :: RealFloat a => Int -> Int -> Integer -> Integer -> a
- maxExpt :: Int
- maxExpt10 :: Int
- minExpt :: Int
- powerDouble :: Double -> Double -> Double
- powerFloat :: Float -> Float -> Float
- stgDoubleToWord64 :: Double# -> Word64#
- stgFloatToWord32 :: Float# -> Word32#
- stgWord64ToDouble :: Word64# -> Double#
- stgWord32ToFloat :: Word32# -> Float#
Classes
class Fractional a => Floating a where Source #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, (
, +
)(
and *
)exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
=exp a * exp b
exp (fromInteger 0)
=fromInteger 1
(**) :: a -> a -> a infixr 8 Source #
logBase :: a -> a -> a Source #
computes log1p
x
, but provides more precise
results for small (absolute) values of log
(1 + x)x
if possible.
Since: base-4.9.0.0
computes expm1
x
, but provides more precise
results for small (absolute) values of exp
x - 1x
if possible.
Since: base-4.9.0.0
Instances
class (RealFrac a, Floating a) => RealFloat a where Source #
Efficient, machine-independent access to the components of a floating-point number.
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
floatRadix :: a -> Integer Source #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int Source #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) Source #
A constant function, returning the lowest and highest values
that
may assume for a normal exponent
xx
.
The relation to IEEE emin
and emax
is
.floatRange
x = (emin + 1, emax + 1)
decodeFloat :: a -> (Integer, Int) Source #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a Source #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a Source #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a Source #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool Source #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool Source #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool Source #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
Float
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
Conversion
word2Float :: Word -> Float Source #
integerToFloat# :: Integer -> Float# Source #
Convert an Integer to a Float#
naturalToFloat# :: Natural -> Float# Source #
Convert a Natural to a Float#
castWord32ToFloat :: Word32 -> Float Source #
does a bit-for-bit copy from an integral value
to a floating-point value.castWord32ToFloat
w
Since: base-4.11.0.0
castFloatToWord32 :: Float -> Word32 Source #
does a bit-for-bit copy from a floating-point value
to an integral value.castFloatToWord32
f
Since: base-4.11.0.0
float2Double :: Float -> Double Source #
Operations
floorFloat :: Integral b => Float -> b Source #
ceilingFloat :: Integral b => Float -> b Source #
truncateFloat :: Integral b => Float -> b Source #
roundFloat :: Integral b => Float -> b Source #
Predicate
isFloatDenormalized :: Float -> Int Source #
isFloatFinite :: Float -> Int Source #
isFloatInfinite :: Float -> Int Source #
isFloatNaN :: Float -> Int Source #
isFloatNegativeZero :: Float -> Int Source #
Comparison
Arithmetic
negateFloat :: Float -> Float Source #
expm1Float :: Float -> Float Source #
log1pFloat :: Float -> Float Source #
asinhFloat :: Float -> Float Source #
acoshFloat :: Float -> Float Source #
atanhFloat :: Float -> Float Source #
Double
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
PrintfArg Double Source # | Since: base-2.1 | ||||
Defined in Text.Printf formatArg :: Double -> FieldFormatter Source # parseFormat :: Double -> ModifierParser Source # | |||||
Data Double Source # | Since: base-4.0.0.0 | ||||
Defined in GHC.Internal.Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double Source # toConstr :: Double -> Constr Source # dataTypeOf :: Double -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) Source # gmapT :: (forall b. Data b => b -> b) -> Double -> Double Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source # | |||||
Floating Double Source # | Since: base-2.1 | ||||
Defined in GHC.Internal.Float exp :: Double -> Double Source # log :: Double -> Double Source # sqrt :: Double -> Double Source # (**) :: Double -> Double -> Double Source # logBase :: Double -> Double -> Double Source # sin :: Double -> Double Source # cos :: Double -> Double Source # tan :: Double -> Double Source # asin :: Double -> Double Source # acos :: Double -> Double Source # atan :: Double -> Double Source # sinh :: Double -> Double Source # cosh :: Double -> Double Source # tanh :: Double -> Double Source # asinh :: Double -> Double Source # acosh :: Double -> Double Source # atanh :: Double -> Double Source # log1p :: Double -> Double Source # expm1 :: Double -> Double Source # | |||||
RealFloat Double Source # | Since: base-2.1 | ||||
Defined in GHC.Internal.Float floatRadix :: Double -> Integer Source # floatDigits :: Double -> Int Source # floatRange :: Double -> (Int, Int) Source # decodeFloat :: Double -> (Integer, Int) Source # encodeFloat :: Integer -> Int -> Double Source # exponent :: Double -> Int Source # significand :: Double -> Double Source # scaleFloat :: Int -> Double -> Double Source # isNaN :: Double -> Bool Source # isInfinite :: Double -> Bool Source # isDenormalized :: Double -> Bool Source # isNegativeZero :: Double -> Bool Source # | |||||
Storable Double Source # | Since: base-2.1 | ||||
Defined in GHC.Internal.Foreign.Storable sizeOf :: Double -> Int Source # alignment :: Double -> Int Source # peekElemOff :: Ptr Double -> Int -> IO Double Source # pokeElemOff :: Ptr Double -> Int -> Double -> IO () Source # peekByteOff :: Ptr b -> Int -> IO Double Source # pokeByteOff :: Ptr b -> Int -> Double -> IO () Source # | |||||
Read Double Source # | Since: base-2.1 | ||||
Eq Double Source # | Note that due to the presence of
Also note that
| ||||
Ord Double Source # | IEEE 754 IEEE 754-2008, section 5.11 requires that if at least one of arguments of
IEEE 754-2008, section 5.10 defines Thus, users must be extremely cautious when using Moving further, the behaviour of IEEE 754-2008 compliant | ||||
Defined in GHC.Classes | |||||
Lift Double Source # | |||||
Generic1 (URec Double :: k -> Type) Source # | |||||
Defined in GHC.Internal.Generics
| |||||
Eq1 (UDouble :: Type -> Type) Source # | Since: base-4.21.0.0 | ||||
Ord1 (UDouble :: Type -> Type) Source # | Since: base-4.21.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Show1 (UDouble :: Type -> Type) Source # | Since: base-4.21.0.0 | ||||
Foldable (UDouble :: Type -> Type) Source # | Since: base-4.9.0.0 | ||||
Defined in GHC.Internal.Data.Foldable fold :: Monoid m => UDouble m -> m Source # foldMap :: Monoid m => (a -> m) -> UDouble a -> m Source # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m Source # foldr :: (a -> b -> b) -> b -> UDouble a -> b Source # foldr' :: (a -> b -> b) -> b -> UDouble a -> b Source # foldl :: (b -> a -> b) -> b -> UDouble a -> b Source # foldl' :: (b -> a -> b) -> b -> UDouble a -> b Source # foldr1 :: (a -> a -> a) -> UDouble a -> a Source # foldl1 :: (a -> a -> a) -> UDouble a -> a Source # toList :: UDouble a -> [a] Source # null :: UDouble a -> Bool Source # length :: UDouble a -> Int Source # elem :: Eq a => a -> UDouble a -> Bool Source # maximum :: Ord a => UDouble a -> a Source # minimum :: Ord a => UDouble a -> a Source # | |||||
Traversable (UDouble :: Type -> Type) Source # | Since: base-4.9.0.0 | ||||
Defined in GHC.Internal.Data.Traversable | |||||
Functor (URec Double :: Type -> Type) Source # | Since: base-4.9.0.0 | ||||
Generic (URec Double p) Source # | |||||
Defined in GHC.Internal.Generics
| |||||
Show (URec Double p) Source # | Since: base-4.9.0.0 | ||||
Eq (URec Double p) Source # | Since: base-4.9.0.0 | ||||
Ord (URec Double p) Source # | Since: base-4.9.0.0 | ||||
Defined in GHC.Internal.Generics compare :: URec Double p -> URec Double p -> Ordering Source # (<) :: URec Double p -> URec Double p -> Bool Source # (<=) :: URec Double p -> URec Double p -> Bool Source # (>) :: URec Double p -> URec Double p -> Bool Source # (>=) :: URec Double p -> URec Double p -> Bool Source # max :: URec Double p -> URec Double p -> URec Double p Source # min :: URec Double p -> URec Double p -> URec Double p Source # | |||||
data URec Double (p :: k) Source # | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Rep1 (URec Double :: k -> Type) Source # | Since: base-4.9.0.0 | ||||
Defined in GHC.Internal.Generics | |||||
type Rep (URec Double p) Source # | Since: base-4.9.0.0 | ||||
Defined in GHC.Internal.Generics |
Conversion
double2Int :: Double -> Int Source #
int2Double :: Int -> Double Source #
word2Double :: Word -> Double Source #
integerToDouble# :: Integer -> Double# Source #
Convert an Integer to a Double#
naturalToDouble# :: Natural -> Double# Source #
Encode a Natural (mantissa) into a Double#
castWord64ToDouble :: Word64 -> Double Source #
does a bit-for-bit copy from an integral value
to a floating-point value.castWord64ToDouble
w
Since: base-4.11.0.0
castDoubleToWord64 :: Double -> Word64 Source #
does a bit-for-bit copy from a floating-point value
to an integral value.castDoubleToWord64
f
Since: base-4.11.0.0
double2Float :: Double -> Float Source #
Operations
floorDouble :: Integral b => Double -> b Source #
ceilingDouble :: Integral b => Double -> b Source #
truncateDouble :: Integral b => Double -> b Source #
roundDouble :: Integral b => Double -> b Source #
Predicate
isDoubleDenormalized :: Double -> Int Source #
isDoubleFinite :: Double -> Int Source #
isDoubleInfinite :: Double -> Int Source #
isDoubleNaN :: Double -> Int Source #
isDoubleNegativeZero :: Double -> Int Source #
Comparison
Arithmetic
negateDouble :: Double -> Double Source #
expm1Double :: Double -> Double Source #
log1pDouble :: Double -> Double Source #
sqrtDouble :: Double -> Double Source #
fabsDouble :: Double -> Double Source #
asinDouble :: Double -> Double Source #
acosDouble :: Double -> Double Source #
atanDouble :: Double -> Double Source #
sinhDouble :: Double -> Double Source #
coshDouble :: Double -> Double Source #
tanhDouble :: Double -> Double Source #
asinhDouble :: Double -> Double Source #
acoshDouble :: Double -> Double Source #
atanhDouble :: Double -> Double Source #
Formatting
showFloat :: RealFloat a => a -> ShowS Source #
Show a signed RealFloat
value to full precision
using standard decimal notation for arguments whose absolute value lies
between 0.1
and 9,999,999
, and scientific notation otherwise.
Operations
log1mexpOrd :: (Ord a, Floating a) => a -> a Source #
floatToDigits :: RealFloat a => Integer -> a -> ([Int], Int) Source #
floatToDigits
takes a base and a non-negative RealFloat
number,
and returns a list of digits and an exponent.
In particular, if x>=0
, and
floatToDigits base x = ([d1,d2,...,dn], e)
then
n >= 1
x = 0.d1d2...dn * (base**e)
0 <= di <= base-1
integerToBinaryFloat' :: RealFloat a => Integer -> a Source #
Converts a positive integer to a floating-point value.
The value nearest to the argument will be returned. If there are two such values, the one with an even significand will be returned (i.e. IEEE roundTiesToEven).
The argument must be strictly positive, and floatRadix (undefined :: a)
must be 2.
Monomorphic equality operators
See GHC.Classes#matching_overloaded_methods_in_rules
Internal
These may vanish in a future release
clamp :: Int -> Int -> Int Source #
Used to prevent exponent over/underflow when encoding floating point numbers. This is also the same as
\(x,y) -> max (-x) (min x y)
Example
>>>
clamp (-10) 5
10
Since: base-4.13.0.0
stgDoubleToWord64 :: Double# -> Word64# Source #
Deprecated: Use castDoubleToWord64# instead
stgFloatToWord32 :: Float# -> Word32# Source #
Deprecated: Use castFloatToWord32# instead
stgWord64ToDouble :: Word64# -> Double# Source #
Deprecated: Use castWord64ToDouble# instead
stgWord32ToFloat :: Word32# -> Float# Source #
Deprecated: Use castWord32ToFloat# instead