base-4.20.0.0: Core data structures and operations
Copyright(c) The University of Glasgow 1994-2002
Licensesee libraries/base/LICENSE
Maintainerghc-devs@haskell.org
Stabilityinternal
Portabilitynon-portable (GHC Extensions)
Safe HaskellSafe
LanguageHaskell2010

GHC.Real

Description

The types Ratio and Rational, and the classes Real, Fractional, Integral, and RealFrac.

Synopsis

Classes

class (Num a, Ord a) => Real a where Source #

Real numbers.

The Haskell report defines no laws for Real, however Real instances are customarily expected to adhere to the following law:

Coherence with fromRational
if the type also implements Fractional, then fromRational is a left inverse for toRational, i.e. fromRational (toRational i) = i

The law does not hold for Float, Double, CFloat, CDouble, etc., because these types contain non-finite values, which cannot be roundtripped through Rational.

Methods

toRational :: a -> Rational Source #

Rational equivalent of its real argument with full precision.

Instances

Instances details
Real CBool Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CChar Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CClock Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CDouble Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CFloat Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CInt Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CIntMax Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CIntPtr Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CLLong Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CLong Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CPtrdiff Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CSChar Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CSUSeconds Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CShort Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CSigAtomic Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CSize Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CTime Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CUChar Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CUInt Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CUIntMax Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CUIntPtr Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CULLong Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CULong Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CUSeconds Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CUShort Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real CWchar Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Real IntPtr Source # 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Real WordPtr Source # 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Real Int16 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Real Int32 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Real Int64 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Real Int8 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Real CBlkCnt Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CBlkSize Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CCc Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CClockId Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CDev Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CFsBlkCnt Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CFsFilCnt Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CGid Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CId Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CIno Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CKey Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CMode Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CNfds Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CNlink Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real COff Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CPid Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CRLim Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CSocklen Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CSpeed Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CSsize Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CTcflag Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CUid Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real Fd Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real Word16 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Real Word32 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Real Word64 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Real Word8 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Real Integer Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Real Natural Source #

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Real

Real Int Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Real Word Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Real

Real a => Real (Identity a) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Real a => Real (Down a) Source #

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Integral a => Real (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

HasResolution a => Real (Fixed a) Source #

Since: base-2.1

Instance details

Defined in Data.Fixed

Real a => Real (Const a b) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

toRational :: Const a b -> Rational Source #

Real (f (g a)) => Real (Compose f g a) Source #

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

toRational :: Compose f g a -> Rational Source #

class (Real a, Enum a) => Integral a where Source #

Integral numbers, supporting integer division.

The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the div/mod and quot/rem pairs, given suitable Euclidean functions f and g:

  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y

An example of a suitable Euclidean function, for Integer's instance, is abs.

In addition, toInteger should be total, and fromInteger should be a left inverse for it, i.e. fromInteger (toInteger i) = i.

Minimal complete definition

quotRem, toInteger

Methods

quot :: a -> a -> a infixl 7 Source #

Integer division truncated toward zero.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

rem :: a -> a -> a infixl 7 Source #

Integer remainder, satisfying

(x `quot` y)*y + (x `rem` y) == x

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

div :: a -> a -> a infixl 7 Source #

Integer division truncated toward negative infinity.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

mod :: a -> a -> a infixl 7 Source #

Integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

quotRem :: a -> a -> (a, a) Source #

Simultaneous quot and rem.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

divMod :: a -> a -> (a, a) Source #

simultaneous div and mod.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

toInteger :: a -> Integer Source #

Conversion to Integer.

Instances

Instances details
Integral CBool Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CChar Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CInt Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CIntMax Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CIntPtr Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CLLong Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CLong Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CPtrdiff Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CSChar Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CShort Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CSigAtomic Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CSize Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CUChar Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CUInt Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CUIntMax Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CUIntPtr Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CULLong Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CULong Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CUShort Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral CWchar Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Integral IntPtr Source # 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Integral WordPtr Source # 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Integral Int16 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Integral Int32 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Integral Int64 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Integral Int8 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Integral CBlkCnt Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CBlkSize Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CClockId Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CDev Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CFsBlkCnt Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CFsFilCnt Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CGid Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CId Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: CId -> CId -> CId Source #

rem :: CId -> CId -> CId Source #

div :: CId -> CId -> CId Source #

mod :: CId -> CId -> CId Source #

quotRem :: CId -> CId -> (CId, CId) Source #

divMod :: CId -> CId -> (CId, CId) Source #

toInteger :: CId -> Integer Source #

Integral CIno Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CKey Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CMode Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CNfds Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CNlink Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral COff Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CPid Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CRLim Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CSocklen Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CSsize Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CTcflag Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CUid Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral Fd Source # 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: Fd -> Fd -> Fd Source #

rem :: Fd -> Fd -> Fd Source #

div :: Fd -> Fd -> Fd Source #

mod :: Fd -> Fd -> Fd Source #

quotRem :: Fd -> Fd -> (Fd, Fd) Source #

divMod :: Fd -> Fd -> (Fd, Fd) Source #

toInteger :: Fd -> Integer Source #

Integral Word16 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Integral Word32 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Integral Word64 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Integral Word8 Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Integral Integer Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Integral Natural Source #

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Real

Integral Int Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

quot :: Int -> Int -> Int Source #

rem :: Int -> Int -> Int Source #

div :: Int -> Int -> Int Source #

mod :: Int -> Int -> Int Source #

quotRem :: Int -> Int -> (Int, Int) Source #

divMod :: Int -> Int -> (Int, Int) Source #

toInteger :: Int -> Integer Source #

Integral Word Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Real

Integral a => Integral (Identity a) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Integral a => Integral (Const a b) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b Source #

rem :: Const a b -> Const a b -> Const a b Source #

div :: Const a b -> Const a b -> Const a b Source #

mod :: Const a b -> Const a b -> Const a b Source #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) Source #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) Source #

toInteger :: Const a b -> Integer Source #

Integral (f (g a)) => Integral (Compose f g a) Source #

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

quot :: Compose f g a -> Compose f g a -> Compose f g a Source #

rem :: Compose f g a -> Compose f g a -> Compose f g a Source #

div :: Compose f g a -> Compose f g a -> Compose f g a Source #

mod :: Compose f g a -> Compose f g a -> Compose f g a Source #

quotRem :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a) Source #

divMod :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a) Source #

toInteger :: Compose f g a -> Integer Source #

class Num a => Fractional a where Source #

Fractional numbers, supporting real division.

The Haskell Report defines no laws for Fractional. However, (+) and (*) are customarily expected to define a division ring and have the following properties:

recip gives the multiplicative inverse
x * recip x = recip x * x = fromInteger 1
Totality of toRational
toRational is total
Coherence with toRational
if the type also implements Real, then fromRational is a left inverse for toRational, i.e. fromRational (toRational i) = i

Note that it isn't customarily expected that a type instance of Fractional implement a field. However, all instances in base do.

Minimal complete definition

fromRational, (recip | (/))

Methods

(/) :: a -> a -> a infixl 7 Source #

Fractional division.

recip :: a -> a Source #

Reciprocal fraction.

fromRational :: Rational -> a Source #

Conversion from a Rational (that is Ratio Integer). A floating literal stands for an application of fromRational to a value of type Rational, so such literals have type (Fractional a) => a.

Instances

Instances details
Fractional CDouble Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Fractional CFloat Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

RealFloat a => Fractional (Complex a) Source #

Since: base-2.1

Instance details

Defined in Data.Complex

Fractional a => Fractional (Identity a) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Fractional a => Fractional (Down a) Source #

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(/) :: Down a -> Down a -> Down a Source #

recip :: Down a -> Down a Source #

fromRational :: Rational -> Down a Source #

Integral a => Fractional (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a Source #

recip :: Ratio a -> Ratio a Source #

fromRational :: Rational -> Ratio a Source #

HasResolution a => Fractional (Fixed a) Source #

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

(/) :: Fixed a -> Fixed a -> Fixed a Source #

recip :: Fixed a -> Fixed a Source #

fromRational :: Rational -> Fixed a Source #

Fractional a => Fractional (Op a b) Source # 
Instance details

Defined in Data.Functor.Contravariant

Methods

(/) :: Op a b -> Op a b -> Op a b Source #

recip :: Op a b -> Op a b Source #

fromRational :: Rational -> Op a b Source #

Fractional a => Fractional (Const a b) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b Source #

recip :: Const a b -> Const a b Source #

fromRational :: Rational -> Const a b Source #

Fractional (f (g a)) => Fractional (Compose f g a) Source #

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(/) :: Compose f g a -> Compose f g a -> Compose f g a Source #

recip :: Compose f g a -> Compose f g a Source #

fromRational :: Rational -> Compose f g a Source #

class (Real a, Fractional a) => RealFrac a where Source #

Extracting components of fractions.

Minimal complete definition

properFraction

Methods

properFraction :: Integral b => a -> (b, a) Source #

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.

truncate :: Integral b => a -> b Source #

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> b Source #

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> b Source #

ceiling x returns the least integer not less than x

floor :: Integral b => a -> b Source #

floor x returns the greatest integer not greater than x

Instances

Instances details
RealFrac CDouble Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

RealFrac CFloat Source # 
Instance details

Defined in GHC.Internal.Foreign.C.Types

RealFrac a => RealFrac (Identity a) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

properFraction :: Integral b => Identity a -> (b, Identity a) Source #

truncate :: Integral b => Identity a -> b Source #

round :: Integral b => Identity a -> b Source #

ceiling :: Integral b => Identity a -> b Source #

floor :: Integral b => Identity a -> b Source #

RealFrac a => RealFrac (Down a) Source #

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

properFraction :: Integral b => Down a -> (b, Down a) Source #

truncate :: Integral b => Down a -> b Source #

round :: Integral b => Down a -> b Source #

ceiling :: Integral b => Down a -> b Source #

floor :: Integral b => Down a -> b Source #

Integral a => RealFrac (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) Source #

truncate :: Integral b => Ratio a -> b Source #

round :: Integral b => Ratio a -> b Source #

ceiling :: Integral b => Ratio a -> b Source #

floor :: Integral b => Ratio a -> b Source #

HasResolution a => RealFrac (Fixed a) Source #

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

properFraction :: Integral b => Fixed a -> (b, Fixed a) Source #

truncate :: Integral b => Fixed a -> b Source #

round :: Integral b => Fixed a -> b Source #

ceiling :: Integral b => Fixed a -> b Source #

floor :: Integral b => Fixed a -> b Source #

RealFrac a => RealFrac (Const a b) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) Source #

truncate :: Integral b0 => Const a b -> b0 Source #

round :: Integral b0 => Const a b -> b0 Source #

ceiling :: Integral b0 => Const a b -> b0 Source #

floor :: Integral b0 => Const a b -> b0 Source #

RealFrac (f (g a)) => RealFrac (Compose f g a) Source #

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

properFraction :: Integral b => Compose f g a -> (b, Compose f g a) Source #

truncate :: Integral b => Compose f g a -> b Source #

round :: Integral b => Compose f g a -> b Source #

ceiling :: Integral b => Compose f g a -> b Source #

floor :: Integral b => Compose f g a -> b Source #

Conversion

fromIntegral :: (Integral a, Num b) => a -> b Source #

General coercion from Integral types.

WARNING: This function performs silent truncation if the result type is not at least as big as the argument's type.

realToFrac :: (Real a, Fractional b) => a -> b Source #

General coercion to Fractional types.

WARNING: This function goes through the Rational type, which does not have values for NaN for example. This means it does not round-trip.

For Double it also behaves differently with or without -O0:

Prelude> realToFrac nan -- With -O0
-Infinity
Prelude> realToFrac nan
NaN

Formatting

showSigned Source #

Arguments

:: Real a 
=> (a -> ShowS)

a function that can show unsigned values

-> Int

the precedence of the enclosing context

-> a

the value to show

-> ShowS 

Converts a possibly-negative Real value to a string.

Predicates

even :: Integral a => a -> Bool Source #

odd :: Integral a => a -> Bool Source #

Arithmetic

(^) :: (Num a, Integral b) => a -> b -> a infixr 8 Source #

raise a number to a non-negative integral power

(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 Source #

raise a number to an integral power

gcd :: Integral a => a -> a -> a Source #

gcd x y is the non-negative factor of both x and y of which every common factor of x and y is also a factor; for example gcd 4 2 = 2, gcd (-4) 6 = 2, gcd 0 4 = 4. gcd 0 0 = 0. (That is, the common divisor that is "greatest" in the divisibility preordering.)

Note: Since for signed fixed-width integer types, abs minBound < 0, the result may be negative if one of the arguments is minBound (and necessarily is if the other is 0 or minBound) for such types.

lcm :: Integral a => a -> a -> a Source #

lcm x y is the smallest positive integer that both x and y divide.

Ratio

data Ratio a Source #

Rational numbers, with numerator and denominator of some Integral type.

Note that Ratio's instances inherit the deficiencies from the type parameter's. For example, Ratio Natural's Num instance has similar problems to Natural's.

Constructors

!a :% !a 

Instances

Instances details
Integral a => Lift (Ratio a :: Type) Source # 
Instance details

Defined in GHC.Internal.TH.Lift

Methods

lift :: Quote m => Ratio a -> m Exp Source #

liftTyped :: forall (m :: Type -> Type). Quote m => Ratio a -> Code m (Ratio a) Source #

(Data a, Integral a) => Data (Ratio a) Source #

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) Source #

toConstr :: Ratio a -> Constr Source #

dataTypeOf :: Ratio a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) Source #

Integral a => Enum (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

succ :: Ratio a -> Ratio a Source #

pred :: Ratio a -> Ratio a Source #

toEnum :: Int -> Ratio a Source #

fromEnum :: Ratio a -> Int Source #

enumFrom :: Ratio a -> [Ratio a] Source #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] Source #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] Source #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] Source #

(Storable a, Integral a) => Storable (Ratio a) Source #

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Foreign.Storable

Methods

sizeOf :: Ratio a -> Int Source #

alignment :: Ratio a -> Int Source #

peekElemOff :: Ptr (Ratio a) -> Int -> IO (Ratio a) Source #

pokeElemOff :: Ptr (Ratio a) -> Int -> Ratio a -> IO () Source #

peekByteOff :: Ptr b -> Int -> IO (Ratio a) Source #

pokeByteOff :: Ptr b -> Int -> Ratio a -> IO () Source #

peek :: Ptr (Ratio a) -> IO (Ratio a) Source #

poke :: Ptr (Ratio a) -> Ratio a -> IO () Source #

Integral a => Num (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(+) :: Ratio a -> Ratio a -> Ratio a Source #

(-) :: Ratio a -> Ratio a -> Ratio a Source #

(*) :: Ratio a -> Ratio a -> Ratio a Source #

negate :: Ratio a -> Ratio a Source #

abs :: Ratio a -> Ratio a Source #

signum :: Ratio a -> Ratio a Source #

fromInteger :: Integer -> Ratio a Source #

(Integral a, Read a) => Read (Ratio a) Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Integral a => Fractional (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a Source #

recip :: Ratio a -> Ratio a Source #

fromRational :: Rational -> Ratio a Source #

Integral a => Real (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Integral a => RealFrac (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) Source #

truncate :: Integral b => Ratio a -> b Source #

round :: Integral b => Ratio a -> b Source #

ceiling :: Integral b => Ratio a -> b Source #

floor :: Integral b => Ratio a -> b Source #

Show a => Show (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Eq a => Eq (Ratio a) Source #

Since: base-2.1

Instance details

Defined in GHC.Internal.Real

Methods

(==) :: Ratio a -> Ratio a -> Bool Source #

(/=) :: Ratio a -> Ratio a -> Bool Source #

Integral a => Ord (Ratio a) Source #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

compare :: Ratio a -> Ratio a -> Ordering Source #

(<) :: Ratio a -> Ratio a -> Bool Source #

(<=) :: Ratio a -> Ratio a -> Bool Source #

(>) :: Ratio a -> Ratio a -> Bool Source #

(>=) :: Ratio a -> Ratio a -> Bool Source #

max :: Ratio a -> Ratio a -> Ratio a Source #

min :: Ratio a -> Ratio a -> Ratio a Source #

type Rational = Ratio Integer Source #

Arbitrary-precision rational numbers, represented as a ratio of two Integer values. A rational number may be constructed using the % operator.

Enum helpers

numericEnumFromThen :: Fractional a => a -> a -> [a] Source #

numericEnumFromTo :: (Ord a, Fractional a) => a -> a -> [a] Source #

numericEnumFromThenTo :: (Ord a, Fractional a) => a -> a -> a -> [a] Source #

integralEnumFrom :: (Integral a, Bounded a) => a -> [a] Source #

integralEnumFromThen :: (Integral a, Bounded a) => a -> a -> [a] Source #

integralEnumFromTo :: Integral a => a -> a -> [a] Source #

integralEnumFromThenTo :: Integral a => a -> a -> a -> [a] Source #

Construction

(%) :: Integral a => a -> a -> Ratio a infixl 7 Source #

Forms the ratio of two integral numbers.

Projection

numerator :: Ratio a -> a Source #

Extract the numerator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.

denominator :: Ratio a -> a Source #

Extract the denominator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.

Operations

reduce :: Integral a => a -> a -> Ratio a Source #

reduce is a subsidiary function used only in this module. It normalises a ratio by dividing both numerator and denominator by their greatest common divisor.

Internal

powImpl :: (Num a, Integral b) => a -> b -> a Source #

powImplAcc :: (Num a, Integral b) => a -> b -> a -> a Source #