{-# LANGUAGE Safe #-} -- | -- -- Module : Control.Monad.Fix -- Copyright : (c) Andy Gill 2001, -- (c) Oregon Graduate Institute of Science and Technology, 2002 -- License : BSD-style (see the file libraries/base/LICENSE) -- Maintainer : libraries@haskell.org -- Stability : stable -- Portability : portable -- -- Monadic fixpoints, used for desugaring of @{-# LANGUAGE RecursiveDo #-}@. -- -- Consider the generalized version of so-called @repmin@ -- (/replace with minimum/) problem: -- accumulate elements of a container into a 'Monoid' -- and modify each element using the final accumulator. -- -- @ -- repmin -- :: (Functor t, Foldable t, Monoid b) -- => (a -> b) -> (a -> b -> c) -> t a -> t c -- repmin f g as = fmap (\`g\` foldMap f as) as -- @ -- -- The naive implementation as above makes two traversals. Can we do better -- and achieve the goal in a single pass? It's seemingly impossible, because we would -- have to know the future, -- but lazy evaluation comes to the rescue: -- -- @ -- import Data.Traversable (mapAccumR) -- -- repmin -- :: (Traversable t, Monoid b) -- => (a -> b) -> (a -> b -> c) -> t a -> t c -- repmin f g as = -- let (b, cs) = mapAccumR (\\acc a -> (f a <> acc, g a b)) mempty as in cs -- @ -- -- How can we check that @repmin@ indeed traverses only once? -- Let's run it on an infinite input: -- -- >>> import Data.Monoid (All(..)) -- >>> take 3 $ repmin All (const id) ([True, True, False] ++ undefined) -- [All {getAll = False},All {getAll = False},All {getAll = False}] -- -- So far so good, but can we generalise @g@ to return a monadic value @a -> b -> m c@? -- The following does not work, complaining that @b@ is not in scope: -- -- @ -- import Data.Traversable (mapAccumM) -- -- repminM -- :: (Traversable t, Monoid b, Monad m) -- => (a -> b) -> (a -> b -> m c) -> t a -> m (t c) -- repminM f g as = do -- (b, cs) \<- mapAccumM (\\acc a -> (f a <> acc,) \<$\> g a b) mempty as -- pure cs -- @ -- -- To solve the riddle, let's rewrite @repmin@ via 'fix': -- -- @ -- repmin -- :: (Traversable t, Monoid b) -- => (a -> b) -> (a -> b -> c) -> t a -> t c -- repmin f g as = snd $ fix $ -- \\(b, cs) -> mapAccumR (\\acc a -> (f a <> acc, g a b)) mempty as -- @ -- -- Now we can replace 'fix' with 'mfix' to obtain the solution: -- -- @ -- repminM -- :: (Traversable t, Monoid b, MonadFix m) -- => (a -> b) -> (a -> b -> m c) -> t a -> m (t c) -- repminM f g as = fmap snd $ mfix $ -- \\(~(b, cs)) -> mapAccumM (\\acc a -> (f a <> acc,) \<$\> g a b) mempty as -- @ -- -- For example, -- -- >>> import Data.Monoid (Sum(..)) -- >>> repminM Sum (\a b -> print a >> pure (a + getSum b)) [3, 5, 2] -- 3 -- 5 -- 2 -- [13,15,12] -- -- Incredibly, GHC is capable to do this transformation automatically, -- when @{-# LANGUAGE RecursiveDo #-}@ is enabled. Namely, the following -- implementation of @repminM@ works (note @mdo@ instead of @do@): -- -- @ -- {-# LANGUAGE RecursiveDo #-} -- -- repminM -- :: (Traversable t, Monoid b, MonadFix m) -- => (a -> b) -> (a -> b -> m c) -> t a -> m (t c) -- repminM f g as = mdo -- (b, cs) \<- mapAccumM (\\acc a -> (f a <> acc,) \<$\> g a b) mempty as -- pure cs -- @ -- -- Further reading: -- -- * GHC User’s Guide, The recursive do-notation. -- * Haskell Wiki, <https://wiki.haskell.org/MonadFix MonadFix>. -- * Levent Erkök, <https://leventerkok.github.io/papers/erkok-thesis.pdf Value recursion in monadic computations>, Oregon Graduate Institute, 2002. -- * Levent Erkök, John Launchbury, <https://leventerkok.github.io/papers/recdo.pdf A recursive do for Haskell>, Haskell '02, 29-37, 2002. -- * Richard S. Bird, <https://doi.org/10.1007/BF00264249 Using circular programs to eliminate multiple traversals of data>, Acta Informatica 21, 239-250, 1984. -- * Jasper Van der Jeugt, <https://jaspervdj.be/posts/2023-07-22-lazy-layout.html Lazy layout>, 2023. module Control.Monad.Fix (MonadFix(mfix), fix ) where import GHC.Internal.Control.Monad.Fix