{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE PatternGuards #-}
#if defined(__GLASGOW_HASKELL__)
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
#endif
#define USE_MAGIC_PROXY 1

#ifdef USE_MAGIC_PROXY
{-# LANGUAGE MagicHash #-}
#endif

{-# OPTIONS_HADDOCK not-home #-}

#include "containers.h"

#if !(WORD_SIZE_IN_BITS >= 61)
#define DEFINE_ALTERF_FALLBACK 1
#endif

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Map.Internal
-- Copyright   :  (c) Daan Leijen 2002
--                (c) Andriy Palamarchuk 2008
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Portability :  portable
--
-- = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- The contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
--
-- = Description
--
-- An efficient implementation of maps from keys to values (dictionaries).
--
-- Since many function names (but not the type name) clash with
-- "Prelude" names, this module is usually imported @qualified@, e.g.
--
-- >  import Data.Map (Map)
-- >  import qualified Data.Map as Map
--
-- The implementation of 'Map' is based on /size balanced/ binary trees (or
-- trees of /bounded balance/) as described by:
--
--    * Stephen Adams, \"/Efficient sets: a balancing act/\",
--     Journal of Functional Programming 3(4):553-562, October 1993,
--     <http://www.swiss.ai.mit.edu/~adams/BB/>.
--    * J. Nievergelt and E.M. Reingold,
--      \"/Binary search trees of bounded balance/\",
--      SIAM journal of computing 2(1), March 1973.
--
--  Bounds for 'union', 'intersection', and 'difference' are as given
--  by
--
--    * Guy Blelloch, Daniel Ferizovic, and Yihan Sun,
--      \"/Just Join for Parallel Ordered Sets/\",
--      <https://arxiv.org/abs/1602.02120v3>.
--
-- Note that the implementation is /left-biased/ -- the elements of a
-- first argument are always preferred to the second, for example in
-- 'union' or 'insert'.
--
-- Operation comments contain the operation time complexity in
-- the Big-O notation <http://en.wikipedia.org/wiki/Big_O_notation>.
--
-- @since 0.5.9
-----------------------------------------------------------------------------

-- [Note: Using INLINABLE]
-- ~~~~~~~~~~~~~~~~~~~~~~~
-- It is crucial to the performance that the functions specialize on the Ord
-- type when possible. GHC 7.0 and higher does this by itself when it sees th
-- unfolding of a function -- that is why all public functions are marked
-- INLINABLE (that exposes the unfolding).


-- [Note: Using INLINE]
-- ~~~~~~~~~~~~~~~~~~~~
-- For other compilers and GHC pre 7.0, we mark some of the functions INLINE.
-- We mark the functions that just navigate down the tree (lookup, insert,
-- delete and similar). That navigation code gets inlined and thus specialized
-- when possible. There is a price to pay -- code growth. The code INLINED is
-- therefore only the tree navigation, all the real work (rebalancing) is not
-- INLINED by using a NOINLINE.
--
-- All methods marked INLINE have to be nonrecursive -- a 'go' function doing
-- the real work is provided.


-- [Note: Type of local 'go' function]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- If the local 'go' function uses an Ord class, it sometimes heap-allocates
-- the Ord dictionary when the 'go' function does not have explicit type.
-- In that case we give 'go' explicit type. But this slightly decrease
-- performance, as the resulting 'go' function can float out to top level.


-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- As opposed to Map, when 'go' function captures an argument, increased
-- heap-allocation can occur: sometimes in a polymorphic function, the 'go'
-- floats out of its enclosing function and then it heap-allocates the
-- dictionary and the argument. Maybe it floats out too late and strictness
-- analyzer cannot see that these could be passed on stack.
--

-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of Map matters when considering performance.
-- Currently in GHC 7.0, when type has 2 constructors, a forward conditional
-- jump is made when successfully matching second constructor. Successful match
-- of first constructor results in the forward jump not taken.
-- On GHC 7.0, reordering constructors from Tip | Bin to Bin | Tip
-- improves the benchmark by up to 10% on x86.

module Data.Map.Internal (
    -- * Map type
      Map(..)          -- instance Eq,Show,Read
    , Size

    -- * Operators
    , (!), (!?), (\\)

    -- * Query
    , null
    , size
    , member
    , notMember
    , lookup
    , findWithDefault
    , lookupLT
    , lookupGT
    , lookupLE
    , lookupGE

    -- * Construction
    , empty
    , singleton

    -- ** Insertion
    , insert
    , insertWith
    , insertWithKey
    , insertLookupWithKey

    -- ** Delete\/Update
    , delete
    , adjust
    , adjustWithKey
    , update
    , updateWithKey
    , updateLookupWithKey
    , alter
    , alterF

    -- * Combine

    -- ** Union
    , union
    , unionWith
    , unionWithKey
    , unions
    , unionsWith

    -- ** Difference
    , difference
    , differenceWith
    , differenceWithKey

    -- ** Intersection
    , intersection
    , intersectionWith
    , intersectionWithKey

    -- ** Disjoint
    , disjoint

    -- ** Compose
    , compose

    -- ** General combining function
    , SimpleWhenMissing
    , SimpleWhenMatched
    , runWhenMatched
    , runWhenMissing
    , merge
    -- *** @WhenMatched@ tactics
    , zipWithMaybeMatched
    , zipWithMatched
    -- *** @WhenMissing@ tactics
    , mapMaybeMissing
    , dropMissing
    , preserveMissing
    , preserveMissing'
    , mapMissing
    , filterMissing

    -- ** Applicative general combining function
    , WhenMissing (..)
    , WhenMatched (..)
    , mergeA

    -- *** @WhenMatched@ tactics
    -- | The tactics described for 'merge' work for
    -- 'mergeA' as well. Furthermore, the following
    -- are available.
    , zipWithMaybeAMatched
    , zipWithAMatched

    -- *** @WhenMissing@ tactics
    -- | The tactics described for 'merge' work for
    -- 'mergeA' as well. Furthermore, the following
    -- are available.
    , traverseMaybeMissing
    , traverseMissing
    , filterAMissing

    -- ** Deprecated general combining function

    , mergeWithKey

    -- * Traversal
    -- ** Map
    , map
    , mapWithKey
    , traverseWithKey
    , traverseMaybeWithKey
    , mapAccum
    , mapAccumWithKey
    , mapAccumRWithKey
    , mapKeys
    , mapKeysWith
    , mapKeysMonotonic

    -- * Folds
    , foldr
    , foldl
    , foldrWithKey
    , foldlWithKey
    , foldMapWithKey

    -- ** Strict folds
    , foldr'
    , foldl'
    , foldrWithKey'
    , foldlWithKey'

    -- * Conversion
    , elems
    , keys
    , assocs
    , keysSet
    , argSet
    , fromSet
    , fromArgSet

    -- ** Lists
    , toList
    , fromList
    , fromListWith
    , fromListWithKey

    -- ** Ordered lists
    , toAscList
    , toDescList
    , fromAscList
    , fromAscListWith
    , fromAscListWithKey
    , fromDistinctAscList
    , fromDescList
    , fromDescListWith
    , fromDescListWithKey
    , fromDistinctDescList

    -- * Filter
    , filter
    , filterWithKey

    , takeWhileAntitone
    , dropWhileAntitone
    , spanAntitone

    , restrictKeys
    , withoutKeys
    , partition
    , partitionWithKey

    , mapMaybe
    , mapMaybeWithKey
    , mapEither
    , mapEitherWithKey

    , split
    , splitLookup
    , splitRoot

    -- * Submap
    , isSubmapOf, isSubmapOfBy
    , isProperSubmapOf, isProperSubmapOfBy

    -- * Indexed
    , lookupIndex
    , findIndex
    , elemAt
    , updateAt
    , deleteAt
    , take
    , drop
    , splitAt

    -- * Min\/Max
    , lookupMin
    , lookupMax
    , findMin
    , findMax
    , deleteMin
    , deleteMax
    , deleteFindMin
    , deleteFindMax
    , updateMin
    , updateMax
    , updateMinWithKey
    , updateMaxWithKey
    , minView
    , maxView
    , minViewWithKey
    , maxViewWithKey

    -- Used by the strict version
    , AreWeStrict (..)
    , atKeyImpl
#ifdef __GLASGOW_HASKELL__
    , atKeyPlain
#endif
    , bin
    , balance
    , balanceL
    , balanceR
    , delta
    , insertMax
    , link
    , link2
    , glue
    , fromDistinctAscList_linkTop
    , fromDistinctAscList_linkAll
    , fromDistinctDescList_linkTop
    , fromDistinctDescList_linkAll
    , MaybeS(..)
    , Identity(..)
    , FromDistinctMonoState(..)
    , Stack(..)
    , foldl'Stack

    -- Used by Map.Merge.Lazy
    , mapWhenMissing
    , mapWhenMatched
    , lmapWhenMissing
    , contramapFirstWhenMatched
    , contramapSecondWhenMatched
    , mapGentlyWhenMissing
    , mapGentlyWhenMatched
    ) where

import Data.Functor.Identity (Identity (..))
import Control.Applicative (liftA3)
import Data.Functor.Classes
import Data.Semigroup (stimesIdempotentMonoid)
import Data.Semigroup (Arg(..), Semigroup(stimes))
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup (Semigroup((<>)))
#endif
import Control.Applicative (Const (..))
import Control.DeepSeq (NFData(rnf))
import Data.Bits (shiftL, shiftR)
import qualified Data.Foldable as Foldable
import Data.Bifoldable
import Utils.Containers.Internal.Prelude hiding
  (lookup, map, filter, foldr, foldl, foldl', null, splitAt, take, drop)
import Prelude ()

import qualified Data.Set.Internal as Set
import Data.Set.Internal (Set)
import Utils.Containers.Internal.PtrEquality (ptrEq)
import Utils.Containers.Internal.StrictPair
import Utils.Containers.Internal.StrictMaybe
import Utils.Containers.Internal.BitQueue
#ifdef DEFINE_ALTERF_FALLBACK
import Utils.Containers.Internal.BitUtil (wordSize)
#endif

#if __GLASGOW_HASKELL__
import GHC.Exts (build, lazy)
import Language.Haskell.TH.Syntax (Lift)
-- See Note [ Template Haskell Dependencies ]
import Language.Haskell.TH ()
#  ifdef USE_MAGIC_PROXY
import GHC.Exts (Proxy#, proxy# )
#  endif
import qualified GHC.Exts as GHCExts
import Text.Read hiding (lift)
import Data.Data
import qualified Control.Category as Category
import Data.Coerce
#endif


{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}
infixl 9 !,!?,\\ --

-- | \(O(\log n)\). Find the value at a key.
-- Calls 'error' when the element can not be found.
--
-- > fromList [(5,'a'), (3,'b')] ! 1    Error: element not in the map
-- > fromList [(5,'a'), (3,'b')] ! 5 == 'a'

(!) :: Ord k => Map k a -> k -> a
! :: forall k a. Ord k => Map k a -> k -> a
(!) Map k a
m k
k = k -> Map k a -> a
forall k a. Ord k => k -> Map k a -> a
find k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINE (!) #-}
#endif

-- | \(O(\log n)\). Find the value at a key.
-- Returns 'Nothing' when the element can not be found.
--
-- prop> fromList [(5, 'a'), (3, 'b')] !? 1 == Nothing
-- prop> fromList [(5, 'a'), (3, 'b')] !? 5 == Just 'a'
--
-- @since 0.5.9

(!?) :: Ord k => Map k a -> k -> Maybe a
!? :: forall k a. Ord k => Map k a -> k -> Maybe a
(!?) Map k a
m k
k = k -> Map k a -> Maybe a
forall k a. Ord k => k -> Map k a -> Maybe a
lookup k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINE (!?) #-}
#endif

-- | Same as 'difference'.
(\\) :: Ord k => Map k a -> Map k b -> Map k a
Map k a
m1 \\ :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
\\ Map k b
m2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
m1 Map k b
m2
#if __GLASGOW_HASKELL__
{-# INLINE (\\) #-}
#endif

{--------------------------------------------------------------------
  Size balanced trees.
--------------------------------------------------------------------}
-- | A Map from keys @k@ to values @a@.
--
-- The 'Semigroup' operation for 'Map' is 'union', which prefers
-- values from the left operand. If @m1@ maps a key @k@ to a value
-- @a1@, and @m2@ maps the same key to a different value @a2@, then
-- their union @m1 <> m2@ maps @k@ to @a1@.

-- See Note: Order of constructors
data Map k a  = Bin {-# UNPACK #-} !Size !k a !(Map k a) !(Map k a)
              | Tip

type Size     = Int

#ifdef __GLASGOW_HASKELL__
type role Map nominal representational
#endif

#ifdef __GLASGOW_HASKELL__
-- | @since 0.6.6
deriving instance (Lift k, Lift a) => Lift (Map k a)
#endif

instance (Ord k) => Monoid (Map k v) where
    mempty :: Map k v
mempty  = Map k v
forall k a. Map k a
empty
    mconcat :: [Map k v] -> Map k v
mconcat = [Map k v] -> Map k v
forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
f (Map k a) -> Map k a
unions
    mappend :: Map k v -> Map k v -> Map k v
mappend = Map k v -> Map k v -> Map k v
forall a. Semigroup a => a -> a -> a
(<>)

instance (Ord k) => Semigroup (Map k v) where
    <> :: Map k v -> Map k v -> Map k v
(<>)    = Map k v -> Map k v -> Map k v
forall k v. Ord k => Map k v -> Map k v -> Map k v
union
    stimes :: forall b. Integral b => b -> Map k v -> Map k v
stimes  = b -> Map k v -> Map k v
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid

#if __GLASGOW_HASKELL__

{--------------------------------------------------------------------
  A Data instance
--------------------------------------------------------------------}

-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.

instance (Data k, Data a, Ord k) => Data (Map k a) where
  gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Map k a -> c (Map k a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z Map k a
m   = ([(k, a)] -> Map k a) -> c ([(k, a)] -> Map k a)
forall g. g -> c g
z [(k, a)] -> Map k a
forall k a. Ord k => [(k, a)] -> Map k a
fromList c ([(k, a)] -> Map k a) -> [(k, a)] -> c (Map k a)
forall d b. Data d => c (d -> b) -> d -> c b
`f` Map k a -> [(k, a)]
forall k a. Map k a -> [(k, a)]
toList Map k a
m
  toConstr :: Map k a -> Constr
toConstr Map k a
_     = Constr
fromListConstr
  gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Map k a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c  = case Constr -> Size
constrIndex Constr
c of
    Size
1 -> c ([(k, a)] -> Map k a) -> c (Map k a)
forall b r. Data b => c (b -> r) -> c r
k (([(k, a)] -> Map k a) -> c ([(k, a)] -> Map k a)
forall r. r -> c r
z [(k, a)] -> Map k a
forall k a. Ord k => [(k, a)] -> Map k a
fromList)
    Size
_ -> [Char] -> c (Map k a)
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
  dataTypeOf :: Map k a -> DataType
dataTypeOf Map k a
_   = DataType
mapDataType
  dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a))
dataCast2 forall d e. (Data d, Data e) => c (t d e)
f    = c (t k a) -> Maybe (c (Map k a))
forall {k1} {k2} {k3} (c :: k1 -> *) (t :: k2 -> k3 -> k1)
       (t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3).
(Typeable t, Typeable t') =>
c (t a b) -> Maybe (c (t' a b))
gcast2 c (t k a)
forall d e. (Data d, Data e) => c (t d e)
f

fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
mapDataType [Char]
"fromList" [] Fixity
Prefix

mapDataType :: DataType
mapDataType :: DataType
mapDataType = [Char] -> [Constr] -> DataType
mkDataType [Char]
"Data.Map.Internal.Map" [Constr
fromListConstr]

#endif

{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | \(O(1)\). Is the map empty?
--
-- > Data.Map.null (empty)           == True
-- > Data.Map.null (singleton 1 'a') == False

null :: Map k a -> Bool
null :: forall k a. Map k a -> Bool
null Map k a
Tip      = Bool
True
null (Bin {}) = Bool
False
{-# INLINE null #-}

-- | \(O(1)\). The number of elements in the map.
--
-- > size empty                                   == 0
-- > size (singleton 1 'a')                       == 1
-- > size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3

size :: Map k a -> Int
size :: forall k a. Map k a -> Size
size Map k a
Tip              = Size
0
size (Bin Size
sz k
_ a
_ Map k a
_ Map k a
_) = Size
sz
{-# INLINE size #-}


-- | \(O(\log n)\). Lookup the value at a key in the map.
--
-- The function will return the corresponding value as @('Just' value)@,
-- or 'Nothing' if the key isn't in the map.
--
-- An example of using @lookup@:
--
-- > import Prelude hiding (lookup)
-- > import Data.Map
-- >
-- > employeeDept = fromList([("John","Sales"), ("Bob","IT")])
-- > deptCountry = fromList([("IT","USA"), ("Sales","France")])
-- > countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])
-- >
-- > employeeCurrency :: String -> Maybe String
-- > employeeCurrency name = do
-- >     dept <- lookup name employeeDept
-- >     country <- lookup dept deptCountry
-- >     lookup country countryCurrency
-- >
-- > main = do
-- >     putStrLn $ "John's currency: " ++ (show (employeeCurrency "John"))
-- >     putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete"))
--
-- The output of this program:
--
-- >   John's currency: Just "Euro"
-- >   Pete's currency: Nothing
lookup :: Ord k => k -> Map k a -> Maybe a
lookup :: forall k a. Ord k => k -> Map k a -> Maybe a
lookup = k -> Map k a -> Maybe a
forall k a. Ord k => k -> Map k a -> Maybe a
go
  where
    go :: t -> Map t a -> Maybe a
go !t
_ Map t a
Tip = Maybe a
forall a. Maybe a
Nothing
    go t
k (Bin Size
_ t
kx a
x Map t a
l Map t a
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
      Ordering
LT -> t -> Map t a -> Maybe a
go t
k Map t a
l
      Ordering
GT -> t -> Map t a -> Maybe a
go t
k Map t a
r
      Ordering
EQ -> a -> Maybe a
forall a. a -> Maybe a
Just a
x
#if __GLASGOW_HASKELL__
{-# INLINABLE lookup #-}
#else
{-# INLINE lookup #-}
#endif

-- | \(O(\log n)\). Is the key a member of the map? See also 'notMember'.
--
-- > member 5 (fromList [(5,'a'), (3,'b')]) == True
-- > member 1 (fromList [(5,'a'), (3,'b')]) == False
member :: Ord k => k -> Map k a -> Bool
member :: forall k a. Ord k => k -> Map k a -> Bool
member = k -> Map k a -> Bool
forall k a. Ord k => k -> Map k a -> Bool
go
  where
    go :: t -> Map t a -> Bool
go !t
_ Map t a
Tip = Bool
False
    go t
k (Bin Size
_ t
kx a
_ Map t a
l Map t a
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
      Ordering
LT -> t -> Map t a -> Bool
go t
k Map t a
l
      Ordering
GT -> t -> Map t a -> Bool
go t
k Map t a
r
      Ordering
EQ -> Bool
True
#if __GLASGOW_HASKELL__
{-# INLINABLE member #-}
#else
{-# INLINE member #-}
#endif

-- | \(O(\log n)\). Is the key not a member of the map? See also 'member'.
--
-- > notMember 5 (fromList [(5,'a'), (3,'b')]) == False
-- > notMember 1 (fromList [(5,'a'), (3,'b')]) == True

notMember :: Ord k => k -> Map k a -> Bool
notMember :: forall k a. Ord k => k -> Map k a -> Bool
notMember k
k Map k a
m = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ k -> Map k a -> Bool
forall k a. Ord k => k -> Map k a -> Bool
member k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINABLE notMember #-}
#else
{-# INLINE notMember #-}
#endif

-- | \(O(\log n)\). Find the value at a key.
-- Calls 'error' when the element can not be found.
find :: Ord k => k -> Map k a -> a
find :: forall k a. Ord k => k -> Map k a -> a
find = k -> Map k a -> a
forall k a. Ord k => k -> Map k a -> a
go
  where
    go :: t -> Map t t -> t
go !t
_ Map t t
Tip = [Char] -> t
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.!: given key is not an element in the map"
    go t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
      Ordering
LT -> t -> Map t t -> t
go t
k Map t t
l
      Ordering
GT -> t -> Map t t -> t
go t
k Map t t
r
      Ordering
EQ -> t
x
#if __GLASGOW_HASKELL__
{-# INLINABLE find #-}
#else
{-# INLINE find #-}
#endif

-- | \(O(\log n)\). The expression @('findWithDefault' def k map)@ returns
-- the value at key @k@ or returns default value @def@
-- when the key is not in the map.
--
-- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x'
-- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'
findWithDefault :: Ord k => a -> k -> Map k a -> a
findWithDefault :: forall k a. Ord k => a -> k -> Map k a -> a
findWithDefault = a -> k -> Map k a -> a
forall k a. Ord k => a -> k -> Map k a -> a
go
  where
    go :: t -> t -> Map t t -> t
go t
def !t
_ Map t t
Tip = t
def
    go t
def t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
      Ordering
LT -> t -> t -> Map t t -> t
go t
def t
k Map t t
l
      Ordering
GT -> t -> t -> Map t t -> t
go t
def t
k Map t t
r
      Ordering
EQ -> t
x
#if __GLASGOW_HASKELL__
{-# INLINABLE findWithDefault #-}
#else
{-# INLINE findWithDefault #-}
#endif

-- | \(O(\log n)\). Find largest key smaller than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
lookupLT :: Ord k => k -> Map k v -> Maybe (k, v)
lookupLT :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupLT = k -> Map k v -> Maybe (k, v)
forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
  where
    goNothing :: t -> Map t t -> Maybe (t, t)
goNothing !t
_ Map t t
Tip = Maybe (t, t)
forall a. Maybe a
Nothing
    goNothing t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k t -> t -> Bool
forall a. Ord a => a -> a -> Bool
<= t
kx = t -> Map t t -> Maybe (t, t)
goNothing t
k Map t t
l
                                 | Bool
otherwise = t -> t -> t -> Map t t -> Maybe (t, t)
forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r

    goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = (t, t) -> Maybe (t, t)
forall a. a -> Maybe a
Just (t
kx', t
x')
    goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k t -> t -> Bool
forall a. Ord a => a -> a -> Bool
<= t
kx = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
l
                                     | Bool
otherwise = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupLT #-}
#else
{-# INLINE lookupLT #-}
#endif

-- | \(O(\log n)\). Find smallest key greater than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing
lookupGT :: Ord k => k -> Map k v -> Maybe (k, v)
lookupGT :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupGT = k -> Map k v -> Maybe (k, v)
forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
  where
    goNothing :: t -> Map t t -> Maybe (t, t)
goNothing !t
_ Map t t
Tip = Maybe (t, t)
forall a. Maybe a
Nothing
    goNothing t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k t -> t -> Bool
forall a. Ord a => a -> a -> Bool
< t
kx = t -> t -> t -> Map t t -> Maybe (t, t)
forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
l
                                 | Bool
otherwise = t -> Map t t -> Maybe (t, t)
goNothing t
k Map t t
r

    goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = (t, t) -> Maybe (t, t)
forall a. a -> Maybe a
Just (t
kx', t
x')
    goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k t -> t -> Bool
forall a. Ord a => a -> a -> Bool
< t
kx = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
l
                                     | Bool
otherwise = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupGT #-}
#else
{-# INLINE lookupGT #-}
#endif

-- | \(O(\log n)\). Find largest key smaller or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
lookupLE :: Ord k => k -> Map k v -> Maybe (k, v)
lookupLE :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupLE = k -> Map k v -> Maybe (k, v)
forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
  where
    goNothing :: a -> Map a b -> Maybe (a, b)
goNothing !a
_ Map a b
Tip = Maybe (a, b)
forall a. Maybe a
Nothing
    goNothing a
k (Bin Size
_ a
kx b
x Map a b
l Map a b
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
k a
kx of Ordering
LT -> a -> Map a b -> Maybe (a, b)
goNothing a
k Map a b
l
                                                        Ordering
EQ -> (a, b) -> Maybe (a, b)
forall a. a -> Maybe a
Just (a
kx, b
x)
                                                        Ordering
GT -> a -> a -> b -> Map a b -> Maybe (a, b)
forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust a
k a
kx b
x Map a b
r

    goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = (t, t) -> Maybe (t, t)
forall a. a -> Maybe a
Just (t
kx', t
x')
    goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of Ordering
LT -> t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
l
                                                            Ordering
EQ -> (t, t) -> Maybe (t, t)
forall a. a -> Maybe a
Just (t
kx, t
x)
                                                            Ordering
GT -> t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupLE #-}
#else
{-# INLINE lookupLE #-}
#endif

-- | \(O(\log n)\). Find smallest key greater or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing
lookupGE :: Ord k => k -> Map k v -> Maybe (k, v)
lookupGE :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupGE = k -> Map k v -> Maybe (k, v)
forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
  where
    goNothing :: t -> Map t b -> Maybe (t, b)
goNothing !t
_ Map t b
Tip = Maybe (t, b)
forall a. Maybe a
Nothing
    goNothing t
k (Bin Size
_ t
kx b
x Map t b
l Map t b
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of Ordering
LT -> t -> t -> b -> Map t b -> Maybe (t, b)
forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx b
x Map t b
l
                                                        Ordering
EQ -> (t, b) -> Maybe (t, b)
forall a. a -> Maybe a
Just (t
kx, b
x)
                                                        Ordering
GT -> t -> Map t b -> Maybe (t, b)
goNothing t
k Map t b
r

    goJust :: a -> a -> b -> Map a b -> Maybe (a, b)
goJust !a
_ a
kx' b
x' Map a b
Tip = (a, b) -> Maybe (a, b)
forall a. a -> Maybe a
Just (a
kx', b
x')
    goJust a
k a
kx' b
x' (Bin Size
_ a
kx b
x Map a b
l Map a b
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
k a
kx of Ordering
LT -> a -> a -> b -> Map a b -> Maybe (a, b)
goJust a
k a
kx b
x Map a b
l
                                                            Ordering
EQ -> (a, b) -> Maybe (a, b)
forall a. a -> Maybe a
Just (a
kx, b
x)
                                                            Ordering
GT -> a -> a -> b -> Map a b -> Maybe (a, b)
goJust a
k a
kx' b
x' Map a b
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupGE #-}
#else
{-# INLINE lookupGE #-}
#endif

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | \(O(1)\). The empty map.
--
-- > empty      == fromList []
-- > size empty == 0

empty :: Map k a
empty :: forall k a. Map k a
empty = Map k a
forall k a. Map k a
Tip
{-# INLINE empty #-}

-- | \(O(1)\). A map with a single element.
--
-- > singleton 1 'a'        == fromList [(1, 'a')]
-- > size (singleton 1 'a') == 1

singleton :: k -> a -> Map k a
singleton :: forall k a. k -> a -> Map k a
singleton k
k a
x = Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip
{-# INLINE singleton #-}

{--------------------------------------------------------------------
  Insertion
--------------------------------------------------------------------}
-- | \(O(\log n)\). Insert a new key and value in the map.
-- If the key is already present in the map, the associated value is
-- replaced with the supplied value. 'insert' is equivalent to
-- @'insertWith' 'const'@.
--
-- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')]
-- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')]
-- > insert 5 'x' empty                         == singleton 5 'x'

-- See Note: Type of local 'go' function
-- See Note: Avoiding worker/wrapper
insert :: Ord k => k -> a -> Map k a -> Map k a
insert :: forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
kx0 = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
kx0 k
kx0
  where
    -- Unlike insertR, we only get sharing here
    -- when the inserted value is at the same address
    -- as the present value. We try anyway; this condition
    -- seems particularly likely to occur in 'union'.
    go :: Ord k => k -> k -> a -> Map k a -> Map k a
    go :: forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig !k
_  a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton (k -> k
forall a. a -> a
lazy k
orig) a
x
    go k
orig !k
kx a
x t :: Map k a
t@(Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
            Ordering
LT | Map k a
l' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
               | Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
               where !l' :: Map k a
l' = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
l
            Ordering
GT | Map k a
r' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
               | Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
               where !r' :: Map k a
r' = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
r
            Ordering
EQ | a
x a -> a -> Bool
forall a. a -> a -> Bool
`ptrEq` a
y Bool -> Bool -> Bool
&& (k -> k
forall a. a -> a
lazy k
orig k -> Bool -> Bool
forall a b. a -> b -> b
`seq` (k
orig k -> k -> Bool
forall a. a -> a -> Bool
`ptrEq` k
ky)) -> Map k a
t
               | Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz (k -> k
forall a. a -> a
lazy k
orig) a
x Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insert #-}
#else
{-# INLINE insert #-}
#endif

#ifndef __GLASGOW_HASKELL__
lazy :: a -> a
lazy a = a
#endif

-- [Note: Avoiding worker/wrapper]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- 'insert' has to go to great lengths to get pointer equality right and
-- to prevent unnecessary allocation. The trouble is that GHC *really* wants
-- to unbox the key and throw away the boxed one. This is bad for us, because
-- we want to compare the pointer of the box we are given to the one already
-- present if they compare EQ. It's also bad for us because it leads to the
-- key being *reboxed* if it's actually stored in the map. Ugh! So we pass the
-- 'go' function *two copies* of the key we're given. One of them we use for
-- comparisons; the other we keep in our pocket. To prevent worker/wrapper from
-- messing with the copy in our pocket, we sprinkle about calls to the magical
-- function 'lazy'. This is all horrible, but it seems to work okay.


-- Insert a new key and value in the map if it is not already present.
-- Used by `union`.

-- See Note: Type of local 'go' function
-- See Note: Avoiding worker/wrapper
insertR :: Ord k => k -> a -> Map k a -> Map k a
insertR :: forall k a. Ord k => k -> a -> Map k a -> Map k a
insertR k
kx0 = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
kx0 k
kx0
  where
    go :: Ord k => k -> k -> a -> Map k a -> Map k a
    go :: forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig !k
_  a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton (k -> k
forall a. a -> a
lazy k
orig) a
x
    go k
orig !k
kx a
x t :: Map k a
t@(Bin Size
_ k
ky a
y Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
            Ordering
LT | Map k a
l' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
               | Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
               where !l' :: Map k a
l' = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
l
            Ordering
GT | Map k a
r' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
               | Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
               where !r' :: Map k a
r' = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
r
            Ordering
EQ -> Map k a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE insertR #-}
#else
{-# INLINE insertR #-}
#endif

-- | \(O(\log n)\). Insert with a function, combining new value and old value.
-- @'insertWith' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert the pair @(key, f new_value old_value)@.
--
-- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]
-- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWith (++) 5 "xxx" empty                         == singleton 5 "xxx"
--
-- Also see the performance note on 'fromListWith'.

insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go
  where
    -- We have no hope of making pointer equality tricks work
    -- here, because lazy insertWith *always* changes the tree,
    -- either adding a new entry or replacing an element with a
    -- thunk.
    go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
    go :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
    go a -> a -> a
f !k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
            Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
            Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
r)
            Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (a -> a -> a
f a
x a
y) Map k a
l Map k a
r

#if __GLASGOW_HASKELL__
{-# INLINABLE insertWith #-}
#else
{-# INLINE insertWith #-}
#endif

-- | A helper function for 'unionWith'. When the key is already in
-- the map, the key is left alone, not replaced. The combining
-- function is flipped--it is applied to the old value and then the
-- new value.
--
-- Also see the performance note on 'fromListWith'.

insertWithR :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go
  where
    go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
    go :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
    go a -> a -> a
f !k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
            Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
            Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
r)
            Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
ky (a -> a -> a
f a
y a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithR #-}
#else
{-# INLINE insertWithR #-}
#endif

-- | \(O(\log n)\). Insert with a function, combining key, new value and old value.
-- @'insertWithKey' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert the pair @(key,f key new_value old_value)@.
-- Note that the key passed to f is the same key passed to 'insertWithKey'.
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]
-- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWithKey f 5 "xxx" empty                         == singleton 5 "xxx"
--
-- Also see the performance note on 'fromListWith'.

-- See Note: Type of local 'go' function
insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go
  where
    go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
    go :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
    go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
            Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
            Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
r)
            Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (k -> a -> a -> a
f k
kx a
x a
y) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithKey #-}
#else
{-# INLINE insertWithKey #-}
#endif

-- | A helper function for 'unionWithKey'. When the key is already in
-- the map, the key is left alone, not replaced. The combining
-- function is flipped--it is applied to the old value and then the
-- new value.
--
-- Also see the performance note on 'fromListWith'.

insertWithKeyR :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go
  where
    go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
    go :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
    go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
            Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
            Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
r)
            Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
ky (k -> a -> a -> a
f k
ky a
y a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithKeyR #-}
#else
{-# INLINE insertWithKeyR #-}
#endif

-- | \(O(\log n)\). Combines insert operation with old value retrieval.
-- The expression (@'insertLookupWithKey' f k x map@)
-- is a pair where the first element is equal to (@'lookup' k map@)
-- and the second element equal to (@'insertWithKey' f k x map@).
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])
-- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "xxx")])
-- > insertLookupWithKey f 5 "xxx" empty                         == (Nothing,  singleton 5 "xxx")
--
-- This is how to define @insertLookup@ using @insertLookupWithKey@:
--
-- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t
-- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])
-- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "x")])
--
-- Also see the performance note on 'fromListWith'.

-- See Note: Type of local 'go' function
insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a
                    -> (Maybe a, Map k a)
insertLookupWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a)
insertLookupWithKey k -> a -> a -> a
f0 k
k0 a
x0 = StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a))
-> (Map k a -> StrictPair (Maybe a) (Map k a))
-> Map k a
-> (Maybe a, Map k a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f0 k
k0 a
x0
  where
    go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
    go :: forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = (Maybe a
forall a. Maybe a
Nothing Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x)
    go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
            Ordering
LT -> let !(Maybe a
found :*: Map k a
l') = (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f k
kx a
x Map k a
l
                      !t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
                  in (Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
            Ordering
GT -> let !(Maybe a
found :*: Map k a
r') = (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f k
kx a
x Map k a
r
                      !t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
                  in (Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
            Ordering
EQ -> (a -> Maybe a
forall a. a -> Maybe a
Just a
y Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (k -> a -> a -> a
f k
kx a
x a
y) Map k a
l Map k a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE insertLookupWithKey #-}
#else
{-# INLINE insertLookupWithKey #-}
#endif

{--------------------------------------------------------------------
  Deletion
--------------------------------------------------------------------}
-- | \(O(\log n)\). Delete a key and its value from the map. When the key is not
-- a member of the map, the original map is returned.
--
-- > delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > delete 5 empty                         == empty

-- See Note: Type of local 'go' function
delete :: Ord k => k -> Map k a -> Map k a
delete :: forall k a. Ord k => k -> Map k a -> Map k a
delete = k -> Map k a -> Map k a
forall k a. Ord k => k -> Map k a -> Map k a
go
  where
    go :: Ord k => k -> Map k a -> Map k a
    go :: forall k a. Ord k => k -> Map k a -> Map k a
go !k
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
    go k
k t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
            Ordering
LT | Map k a
l' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
               | Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
               where !l' :: Map k a
l' = k -> Map k a -> Map k a
forall k a. Ord k => k -> Map k a -> Map k a
go k
k Map k a
l
            Ordering
GT | Map k a
r' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
               | Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
               where !r' :: Map k a
r' = k -> Map k a -> Map k a
forall k a. Ord k => k -> Map k a -> Map k a
go k
k Map k a
r
            Ordering
EQ -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE delete #-}
#else
{-# INLINE delete #-}
#endif

-- | \(O(\log n)\). Update a value at a specific key with the result of the provided function.
-- When the key is not
-- a member of the map, the original map is returned.
--
-- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjust ("new " ++) 7 empty                         == empty

adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a
adjust :: forall k a. Ord k => (a -> a) -> k -> Map k a -> Map k a
adjust a -> a
f = (k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey (\k
_ a
x -> a -> a
f a
x)
#if __GLASGOW_HASKELL__
{-# INLINABLE adjust #-}
#else
{-# INLINE adjust #-}
#endif

-- | \(O(\log n)\). Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > let f key x = (show key) ++ ":new " ++ x
-- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjustWithKey f 7 empty                         == empty

adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey :: forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey = (k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go
  where
    go :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
    go :: forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
_ !k
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
    go k -> a -> a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
           Ordering
LT -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x ((k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
f k
k Map k a
l) Map k a
r
           Ordering
GT -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l ((k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
f k
k Map k a
r)
           Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx (k -> a -> a
f k
kx a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE adjustWithKey #-}
#else
{-# INLINE adjustWithKey #-}
#endif

-- | \(O(\log n)\). The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update :: forall k a. Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update a -> Maybe a
f = (k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey (\k
_ a
x -> a -> Maybe a
f a
x)
#if __GLASGOW_HASKELL__
{-# INLINABLE update #-}
#else
{-# INLINE update #-}
#endif

-- | \(O(\log n)\). The expression (@'updateWithKey' f k map@) updates the
-- value @x@ at @k@ (if it is in the map). If (@f k x@) is 'Nothing',
-- the element is deleted. If it is (@'Just' y@), the key @k@ is bound
-- to the new value @y@.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

-- See Note: Type of local 'go' function
updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey :: forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey = (k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go
  where
    go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
    go :: forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
_ !k
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
    go k -> a -> Maybe a
f k
k(Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
        case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
           Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
f k
k Map k a
l) Map k a
r
           Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
f k
k Map k a
r)
           Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
                   Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
                   Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE updateWithKey #-}
#else
{-# INLINE updateWithKey #-}
#endif

-- | \(O(\log n)\). Lookup and update. See also 'updateWithKey'.
-- The function returns changed value, if it is updated.
-- Returns the original key value if the map entry is deleted.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "5:new a", fromList [(3, "b"), (5, "5:new a")])
-- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a")])
-- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

-- See Note: Type of local 'go' function
updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a)
updateLookupWithKey :: forall k a.
Ord k =>
(k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map k a)
updateLookupWithKey k -> a -> Maybe a
f0 k
k0 = StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a))
-> (Map k a -> StrictPair (Maybe a) (Map k a))
-> Map k a
-> (Maybe a, Map k a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f0 k
k0
 where
   go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> StrictPair (Maybe a) (Map k a)
   go :: forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
_ !k
_ Map k a
Tip = (Maybe a
forall a. Maybe a
Nothing Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip)
   go k -> a -> Maybe a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
          case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
               Ordering
LT -> let !(Maybe a
found :*: Map k a
l') = (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f k
k Map k a
l
                         !t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
                     in (Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
               Ordering
GT -> let !(Maybe a
found :*: Map k a
r') = (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f k
k Map k a
r
                         !t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
                     in (Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
               Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
                       Just a
x' -> (a -> Maybe a
forall a. a -> Maybe a
Just a
x' Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r)
                       Maybe a
Nothing -> let !glued :: Map k a
glued = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
                                  in (a -> Maybe a
forall a. a -> Maybe a
Just a
x Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
glued)
#if __GLASGOW_HASKELL__
{-# INLINABLE updateLookupWithKey #-}
#else
{-# INLINE updateLookupWithKey #-}
#endif

-- | \(O(\log n)\). The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof.
-- 'alter' can be used to insert, delete, or update a value in a 'Map'.
-- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
--
-- > let f _ = Nothing
-- > alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > alter f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- >
-- > let f _ = Just "c"
-- > alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "c")]
-- > alter f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "c")]
--
-- Note that @'adjust' = alter . fmap@.

-- See Note: Type of local 'go' function
alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter :: forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter = (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go
  where
    go :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
    go :: forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f !k
k Map k a
Tip = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
               Maybe a
Nothing -> Map k a
forall k a. Map k a
Tip
               Just a
x  -> k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
k a
x

    go Maybe a -> Maybe a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
               Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
kx a
x ((Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f k
k Map k a
l) Map k a
r
               Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
kx a
x Map k a
l ((Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f k
k Map k a
r)
               Ordering
EQ -> case Maybe a -> Maybe a
f (a -> Maybe a
forall a. a -> Maybe a
Just a
x) of
                       Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
                       Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE alter #-}
#else
{-# INLINE alter #-}
#endif

-- Used to choose the appropriate alterF implementation.
data AreWeStrict = Strict | Lazy

-- | \(O(\log n)\). The expression (@'alterF' f k map@) alters the value @x@ at
-- @k@, or absence thereof.  'alterF' can be used to inspect, insert, delete,
-- or update a value in a 'Map'.  In short: @'lookup' k \<$\> 'alterF' f k m = f
-- ('lookup' k m)@.
--
-- Example:
--
-- @
-- interactiveAlter :: Int -> Map Int String -> IO (Map Int String)
-- interactiveAlter k m = alterF f k m where
--   f Nothing = do
--      putStrLn $ show k ++
--          " was not found in the map. Would you like to add it?"
--      getUserResponse1 :: IO (Maybe String)
--   f (Just old) = do
--      putStrLn $ "The key is currently bound to " ++ show old ++
--          ". Would you like to change or delete it?"
--      getUserResponse2 :: IO (Maybe String)
-- @
--
-- 'alterF' is the most general operation for working with an individual
-- key that may or may not be in a given map. When used with trivial
-- functors like 'Identity' and 'Const', it is often slightly slower than
-- more specialized combinators like 'lookup' and 'insert'. However, when
-- the functor is non-trivial and key comparison is not particularly cheap,
-- it is the fastest way.
--
-- Note on rewrite rules:
--
-- This module includes GHC rewrite rules to optimize 'alterF' for
-- the 'Const' and 'Identity' functors. In general, these rules
-- improve performance. The sole exception is that when using
-- 'Identity', deleting a key that is already absent takes longer
-- than it would without the rules. If you expect this to occur
-- a very large fraction of the time, you might consider using a
-- private copy of the 'Identity' type.
--
-- Note: 'alterF' is a flipped version of the @at@ combinator from
-- @Control.Lens.At@.
--
-- @since 0.5.8
alterF :: (Functor f, Ord k)
       => (Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
alterF :: forall (f :: * -> *) k a.
(Functor f, Ord k) =>
(Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
alterF Maybe a -> f (Maybe a)
f k
k Map k a
m = AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
forall (f :: * -> *) k a.
(Functor f, Ord k) =>
AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
atKeyImpl AreWeStrict
Lazy k
k Maybe a -> f (Maybe a)
f Map k a
m

#ifndef __GLASGOW_HASKELL__
{-# INLINE alterF #-}
#else
{-# INLINABLE [2] alterF #-}

-- We can save a little time by recognizing the special case of
-- `Control.Applicative.Const` and just doing a lookup.
{-# RULES
"alterF/Const" forall k (f :: Maybe a -> Const b (Maybe a)) . alterF f k = \m -> Const . getConst . f $ lookup k m
 #-}

-- base 4.8 and above include Data.Functor.Identity, so we can
-- save a pretty decent amount of time by handling it specially.
{-# RULES
"alterF/Identity" forall k f . alterF f k = atKeyIdentity k f
 #-}
#endif

atKeyImpl :: (Functor f, Ord k) =>
      AreWeStrict -> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
#ifdef DEFINE_ALTERF_FALLBACK
atKeyImpl strict !k f m
-- It doesn't seem sensible to worry about overflowing the queue
-- if the word size is 61 or more. If I calculate it correctly,
-- that would take a map with nearly a quadrillion entries.
  | wordSize < 61 && size m >= alterFCutoff = alterFFallback strict k f m
#endif
atKeyImpl :: forall (f :: * -> *) k a.
(Functor f, Ord k) =>
AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
atKeyImpl AreWeStrict
strict !k
k Maybe a -> f (Maybe a)
f Map k a
m = case k -> Map k a -> TraceResult a
forall k a. Ord k => k -> Map k a -> TraceResult a
lookupTrace k
k Map k a
m of
  TraceResult Maybe a
mv BitQueue
q -> ((Maybe a -> Map k a) -> f (Maybe a) -> f (Map k a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe a -> f (Maybe a)
f Maybe a
mv) ((Maybe a -> Map k a) -> f (Map k a))
-> (Maybe a -> Map k a) -> f (Map k a)
forall a b. (a -> b) -> a -> b
$ \ Maybe a
fres ->
    case Maybe a
fres of
      Maybe a
Nothing -> case Maybe a
mv of
                   Maybe a
Nothing -> Map k a
m
                   Just a
old -> a -> BitQueue -> Map k a -> Map k a
forall any k a. any -> BitQueue -> Map k a -> Map k a
deleteAlong a
old BitQueue
q Map k a
m
      Just a
new -> case AreWeStrict
strict of
         AreWeStrict
Strict -> a
new a -> Map k a -> Map k a
forall a b. a -> b -> b
`seq` case Maybe a
mv of
                      Maybe a
Nothing -> BitQueue -> k -> a -> Map k a -> Map k a
forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
q k
k a
new Map k a
m
                      Just a
_ -> BitQueue -> a -> Map k a -> Map k a
forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
q a
new Map k a
m
         AreWeStrict
Lazy -> case Maybe a
mv of
                      Maybe a
Nothing -> BitQueue -> k -> a -> Map k a -> Map k a
forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
q k
k a
new Map k a
m
                      Just a
_ -> BitQueue -> a -> Map k a -> Map k a
forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
q a
new Map k a
m

{-# INLINE atKeyImpl #-}

#ifdef DEFINE_ALTERF_FALLBACK
alterFCutoff :: Int
#if WORD_SIZE_IN_BITS == 32
alterFCutoff = 55744454
#else
alterFCutoff = case wordSize of
      30 -> 17637893
      31 -> 31356255
      32 -> 55744454
      x -> (4^(x*2-2)) `quot` (3^(x*2-2))  -- Unlikely
#endif
#endif

data TraceResult a = TraceResult (Maybe a) {-# UNPACK #-} !BitQueue

-- Look up a key and return a result indicating whether it was found
-- and what path was taken.
lookupTrace :: Ord k => k -> Map k a -> TraceResult a
lookupTrace :: forall k a. Ord k => k -> Map k a -> TraceResult a
lookupTrace = BitQueueB -> k -> Map k a -> TraceResult a
forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go BitQueueB
emptyQB
  where
    go :: Ord k => BitQueueB -> k -> Map k a -> TraceResult a
    go :: forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go !BitQueueB
q !k
_ Map k a
Tip = Maybe a -> BitQueue -> TraceResult a
forall a. Maybe a -> BitQueue -> TraceResult a
TraceResult Maybe a
forall a. Maybe a
Nothing (BitQueueB -> BitQueue
buildQ BitQueueB
q)
    go BitQueueB
q k
k (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
      Ordering
LT -> (BitQueueB -> k -> Map k a -> TraceResult a
forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go (BitQueueB -> k -> Map k a -> TraceResult a)
-> BitQueueB -> k -> Map k a -> TraceResult a
forall a b. (a -> b) -> a -> b
$! BitQueueB
q BitQueueB -> Bool -> BitQueueB
`snocQB` Bool
False) k
k Map k a
l
      Ordering
GT -> (BitQueueB -> k -> Map k a -> TraceResult a
forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go (BitQueueB -> k -> Map k a -> TraceResult a)
-> BitQueueB -> k -> Map k a -> TraceResult a
forall a b. (a -> b) -> a -> b
$! BitQueueB
q BitQueueB -> Bool -> BitQueueB
`snocQB` Bool
True) k
k Map k a
r
      Ordering
EQ -> Maybe a -> BitQueue -> TraceResult a
forall a. Maybe a -> BitQueue -> TraceResult a
TraceResult (a -> Maybe a
forall a. a -> Maybe a
Just a
x) (BitQueueB -> BitQueue
buildQ BitQueueB
q)

#ifdef __GLASGOW_HASKELL__
{-# INLINABLE lookupTrace #-}
#else
{-# INLINE lookupTrace #-}
#endif

-- Insert at a location (which will always be a leaf)
-- described by the path passed in.
insertAlong :: BitQueue -> k -> a -> Map k a -> Map k a
insertAlong :: forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong !BitQueue
_ k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
insertAlong BitQueue
q k
kx a
x (Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
  case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
        Just (Bool
False, BitQueue
tl) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (BitQueue -> k -> a -> Map k a -> Map k a
forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
tl k
kx a
x Map k a
l) Map k a
r
        Just (Bool
True,BitQueue
tl) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (BitQueue -> k -> a -> Map k a -> Map k a
forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
tl k
kx a
x Map k a
r)
        Maybe (Bool, BitQueue)
Nothing -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
kx a
x Map k a
l Map k a
r  -- Shouldn't happen

-- Delete from a location (which will always be a node)
-- described by the path passed in.
--
-- This is fairly horrifying! We don't actually have any
-- use for the old value we're deleting. But if GHC sees
-- that, then it will allocate a thunk representing the
-- Map with the key deleted before we have any reason to
-- believe we'll actually want that. This transformation
-- enhances sharing, but we don't care enough about that.
-- So deleteAlong needs to take the old value, and we need
-- to convince GHC somehow that it actually uses it. We
-- can't NOINLINE deleteAlong, because that would prevent
-- the BitQueue from being unboxed. So instead we pass the
-- old value to a NOINLINE constant function and then
-- convince GHC that we use the result throughout the
-- computation. Doing the obvious thing and just passing
-- the value itself through the recursion costs 3-4% time,
-- so instead we convert the value to a magical zero-width
-- proxy that's ultimately erased.
deleteAlong :: any -> BitQueue -> Map k a -> Map k a
deleteAlong :: forall any k a. any -> BitQueue -> Map k a -> Map k a
deleteAlong any
old !BitQueue
q0 !Map k a
m = Proxy# () -> BitQueue -> Map k a -> Map k a
forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go (any -> Proxy# ()
forall a. a -> Proxy# ()
bogus any
old) BitQueue
q0 Map k a
m where
#ifdef USE_MAGIC_PROXY
  go :: Proxy# () -> BitQueue -> Map k a -> Map k a
#else
  go :: any -> BitQueue -> Map k a -> Map k a
#endif
  go :: forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go !Proxy# ()
_ !BitQueue
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
  go Proxy# ()
foom BitQueue
q (Bin Size
_ k
ky a
y Map k a
l Map k a
r) =
      case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
        Just (Bool
False, BitQueue
tl) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y (Proxy# () -> BitQueue -> Map k a -> Map k a
forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go Proxy# ()
foom BitQueue
tl Map k a
l) Map k a
r
        Just (Bool
True, BitQueue
tl) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l (Proxy# () -> BitQueue -> Map k a -> Map k a
forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go Proxy# ()
foom BitQueue
tl Map k a
r)
        Maybe (Bool, BitQueue)
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r

#ifdef USE_MAGIC_PROXY
{-# NOINLINE bogus #-}
bogus :: a -> Proxy# ()
bogus :: forall a. a -> Proxy# ()
bogus a
_ = Proxy# ()
forall {k} (a :: k). Proxy# a
proxy#
#else
-- No point hiding in this case.
{-# INLINE bogus #-}
bogus :: a -> a
bogus a = a
#endif

-- Replace the value found in the node described
-- by the given path with a new one.
replaceAlong :: BitQueue -> a -> Map k a -> Map k a
replaceAlong :: forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong !BitQueue
_ a
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip -- Should not happen
replaceAlong BitQueue
q  a
x (Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
      case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
        Just (Bool
False, BitQueue
tl) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
y (BitQueue -> a -> Map k a -> Map k a
forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
tl a
x Map k a
l) Map k a
r
        Just (Bool
True,BitQueue
tl) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
y Map k a
l (BitQueue -> a -> Map k a -> Map k a
forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
tl a
x Map k a
r)
        Maybe (Bool, BitQueue)
Nothing -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
x Map k a
l Map k a
r

#ifdef __GLASGOW_HASKELL__
atKeyIdentity :: Ord k => k -> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a)
atKeyIdentity :: forall k a.
Ord k =>
k
-> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a)
atKeyIdentity k
k Maybe a -> Identity (Maybe a)
f Map k a
t = Map k a -> Identity (Map k a)
forall a. a -> Identity a
Identity (Map k a -> Identity (Map k a)) -> Map k a -> Identity (Map k a)
forall a b. (a -> b) -> a -> b
$ AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
forall k a.
Ord k =>
AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain AreWeStrict
Lazy k
k ((Maybe a -> Identity (Maybe a)) -> Maybe a -> Maybe a
forall a b. Coercible a b => a -> b
coerce Maybe a -> Identity (Maybe a)
f) Map k a
t
{-# INLINABLE atKeyIdentity #-}

atKeyPlain :: Ord k => AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain :: forall k a.
Ord k =>
AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain AreWeStrict
strict k
k0 Maybe a -> Maybe a
f0 Map k a
t = case k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k0 Maybe a -> Maybe a
f0 Map k a
t of
    AltSmaller Map k a
t' -> Map k a
t'
    AltBigger Map k a
t' -> Map k a
t'
    AltAdj Map k a
t' -> Map k a
t'
    Altered k a
AltSame -> Map k a
t
  where
    go :: Ord k => k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
    go :: forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go !k
k Maybe a -> Maybe a
f Map k a
Tip = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
                   Maybe a
Nothing -> Altered k a
forall k a. Altered k a
AltSame
                   Just a
x  -> case AreWeStrict
strict of
                     AreWeStrict
Lazy -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltBigger (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
k a
x
                     AreWeStrict
Strict -> a
x a -> Altered k a -> Altered k a
forall a b. a -> b -> b
`seq` (Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltBigger (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
k a
x)

    go k
k Maybe a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
                   Ordering
LT -> case k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k Maybe a -> Maybe a
f Map k a
l of
                           AltSmaller Map k a
l' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltSmaller (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
                           AltBigger Map k a
l' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltBigger (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l' Map k a
r
                           AltAdj Map k a
l' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltAdj (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l' Map k a
r
                           Altered k a
AltSame -> Altered k a
forall k a. Altered k a
AltSame
                   Ordering
GT -> case k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k Maybe a -> Maybe a
f Map k a
r of
                           AltSmaller Map k a
r' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltSmaller (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
                           AltBigger Map k a
r' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltBigger (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l Map k a
r'
                           AltAdj Map k a
r' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltAdj (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l Map k a
r'
                           Altered k a
AltSame -> Altered k a
forall k a. Altered k a
AltSame
                   Ordering
EQ -> case Maybe a -> Maybe a
f (a -> Maybe a
forall a. a -> Maybe a
Just a
x) of
                           Just a
x' -> case AreWeStrict
strict of
                             AreWeStrict
Lazy -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltAdj (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
                             AreWeStrict
Strict -> a
x' a -> Altered k a -> Altered k a
forall a b. a -> b -> b
`seq` (Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltAdj (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r)
                           Maybe a
Nothing -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltSmaller (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
{-# INLINE atKeyPlain #-}

data Altered k a = AltSmaller !(Map k a) | AltBigger !(Map k a) | AltAdj !(Map k a) | AltSame
#endif

#ifdef DEFINE_ALTERF_FALLBACK
-- When the map is too large to use a bit queue, we fall back to
-- this much slower version which uses a more "natural" implementation
-- improved with Yoneda to avoid repeated fmaps. This works okayish for
-- some operations, but it's pretty lousy for lookups.
alterFFallback :: (Functor f, Ord k)
   => AreWeStrict -> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
alterFFallback Lazy k f t = alterFYoneda k (\m q -> q <$> f m) t id
alterFFallback Strict k f t = alterFYoneda k (\m q -> q . forceMaybe <$> f m) t id
  where
    forceMaybe Nothing = Nothing
    forceMaybe may@(Just !_) = may
{-# NOINLINE alterFFallback #-}

alterFYoneda :: Ord k =>
      k -> (Maybe a -> (Maybe a -> b) -> f b) -> Map k a -> (Map k a -> b) -> f b
alterFYoneda = go
  where
    go :: Ord k =>
      k -> (Maybe a -> (Maybe a -> b) -> f b) -> Map k a -> (Map k a -> b) -> f b
    go !k f Tip g = f Nothing $ \ mx -> case mx of
      Nothing -> g Tip
      Just x -> g (singleton k x)
    go k f (Bin sx kx x l r) g = case compare k kx of
               LT -> go k f l (\m -> g (balance kx x m r))
               GT -> go k f r (\m -> g (balance kx x l m))
               EQ -> f (Just x) $ \ mx' -> case mx' of
                       Just x' -> g (Bin sx kx x' l r)
                       Nothing -> g (glue l r)
{-# INLINE alterFYoneda #-}
#endif

{--------------------------------------------------------------------
  Indexing
--------------------------------------------------------------------}
-- | \(O(\log n)\). Return the /index/ of a key, which is its zero-based index in
-- the sequence sorted by keys. The index is a number from /0/ up to, but not
-- including, the 'size' of the map. Calls 'error' when the key is not
-- a 'member' of the map.
--
-- > findIndex 2 (fromList [(5,"a"), (3,"b")])    Error: element is not in the map
-- > findIndex 3 (fromList [(5,"a"), (3,"b")]) == 0
-- > findIndex 5 (fromList [(5,"a"), (3,"b")]) == 1
-- > findIndex 6 (fromList [(5,"a"), (3,"b")])    Error: element is not in the map

-- See Note: Type of local 'go' function
findIndex :: Ord k => k -> Map k a -> Int
findIndex :: forall k a. Ord k => k -> Map k a -> Size
findIndex = Size -> k -> Map k a -> Size
forall k a. Ord k => Size -> k -> Map k a -> Size
go Size
0
  where
    go :: Ord k => Int -> k -> Map k a -> Int
    go :: forall k a. Ord k => Size -> k -> Map k a -> Size
go !Size
_   !k
_ Map k a
Tip  = [Char] -> Size
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findIndex: element is not in the map"
    go Size
idx k
k (Bin Size
_ k
kx a
_ Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
      Ordering
LT -> Size -> k -> Map k a -> Size
forall k a. Ord k => Size -> k -> Map k a -> Size
go Size
idx k
k Map k a
l
      Ordering
GT -> Size -> k -> Map k a -> Size
forall k a. Ord k => Size -> k -> Map k a -> Size
go (Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1) k
k Map k a
r
      Ordering
EQ -> Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
#if __GLASGOW_HASKELL__
{-# INLINABLE findIndex #-}
#endif

-- | \(O(\log n)\). Lookup the /index/ of a key, which is its zero-based index in
-- the sequence sorted by keys. The index is a number from /0/ up to, but not
-- including, the 'size' of the map.
--
-- > isJust (lookupIndex 2 (fromList [(5,"a"), (3,"b")]))   == False
-- > fromJust (lookupIndex 3 (fromList [(5,"a"), (3,"b")])) == 0
-- > fromJust (lookupIndex 5 (fromList [(5,"a"), (3,"b")])) == 1
-- > isJust (lookupIndex 6 (fromList [(5,"a"), (3,"b")]))   == False

-- See Note: Type of local 'go' function
lookupIndex :: Ord k => k -> Map k a -> Maybe Int
lookupIndex :: forall k a. Ord k => k -> Map k a -> Maybe Size
lookupIndex = Size -> k -> Map k a -> Maybe Size
forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go Size
0
  where
    go :: Ord k => Int -> k -> Map k a -> Maybe Int
    go :: forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go !Size
_  !k
_ Map k a
Tip  = Maybe Size
forall a. Maybe a
Nothing
    go Size
idx k
k (Bin Size
_ k
kx a
_ Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
      Ordering
LT -> Size -> k -> Map k a -> Maybe Size
forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go Size
idx k
k Map k a
l
      Ordering
GT -> Size -> k -> Map k a -> Maybe Size
forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go (Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1) k
k Map k a
r
      Ordering
EQ -> Size -> Maybe Size
forall a. a -> Maybe a
Just (Size -> Maybe Size) -> Size -> Maybe Size
forall a b. (a -> b) -> a -> b
$! Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupIndex #-}
#endif

-- | \(O(\log n)\). Retrieve an element by its /index/, i.e. by its zero-based
-- index in the sequence sorted by keys. If the /index/ is out of range (less
-- than zero, greater or equal to 'size' of the map), 'error' is called.
--
-- > elemAt 0 (fromList [(5,"a"), (3,"b")]) == (3,"b")
-- > elemAt 1 (fromList [(5,"a"), (3,"b")]) == (5, "a")
-- > elemAt 2 (fromList [(5,"a"), (3,"b")])    Error: index out of range

elemAt :: Int -> Map k a -> (k,a)
elemAt :: forall k a. Size -> Map k a -> (k, a)
elemAt !Size
_ Map k a
Tip = [Char] -> (k, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.elemAt: index out of range"
elemAt Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
  = case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
      Ordering
LT -> Size -> Map k a -> (k, a)
forall k a. Size -> Map k a -> (k, a)
elemAt Size
i Map k a
l
      Ordering
GT -> Size -> Map k a -> (k, a)
forall k a. Size -> Map k a -> (k, a)
elemAt (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Map k a
r
      Ordering
EQ -> (k
kx,a
x)
  where
    sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l

-- | \(O(\log n)\). Take a given number of entries in key order, beginning
-- with the smallest keys.
--
-- @
-- take n = 'fromDistinctAscList' . 'Prelude.take' n . 'toAscList'
-- @
--
-- @since 0.5.8

take :: Int -> Map k a -> Map k a
take :: forall k a. Size -> Map k a -> Map k a
take Size
i Map k a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Map k a -> Size
forall k a. Map k a -> Size
size Map k a
m = Map k a
m
take Size
i0 Map k a
m0 = Size -> Map k a -> Map k a
forall k a. Size -> Map k a -> Map k a
go Size
i0 Map k a
m0
  where
    go :: Size -> Map k a -> Map k a
go Size
i !Map k a
_ | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Map k a
forall k a. Map k a
Tip
    go !Size
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
    go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
      case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
        Ordering
LT -> Size -> Map k a -> Map k a
go Size
i Map k a
l
        Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l (Size -> Map k a -> Map k a
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Map k a
r)
        Ordering
EQ -> Map k a
l
      where sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l

-- | \(O(\log n)\). Drop a given number of entries in key order, beginning
-- with the smallest keys.
--
-- @
-- drop n = 'fromDistinctAscList' . 'Prelude.drop' n . 'toAscList'
-- @
--
-- @since 0.5.8
drop :: Int -> Map k a -> Map k a
drop :: forall k a. Size -> Map k a -> Map k a
drop Size
i Map k a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Map k a -> Size
forall k a. Map k a -> Size
size Map k a
m = Map k a
forall k a. Map k a
Tip
drop Size
i0 Map k a
m0 = Size -> Map k a -> Map k a
forall k a. Size -> Map k a -> Map k a
go Size
i0 Map k a
m0
  where
    go :: Size -> Map k a -> Map k a
go Size
i Map k a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Map k a
m
    go !Size
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
    go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
      case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
        Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x (Size -> Map k a -> Map k a
go Size
i Map k a
l) Map k a
r
        Ordering
GT -> Size -> Map k a -> Map k a
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Map k a
r
        Ordering
EQ -> k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
r
      where sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l

-- | \(O(\log n)\). Split a map at a particular index.
--
-- @
-- splitAt !n !xs = ('take' n xs, 'drop' n xs)
-- @
--
-- @since 0.5.8
splitAt :: Int -> Map k a -> (Map k a, Map k a)
splitAt :: forall k a. Size -> Map k a -> (Map k a, Map k a)
splitAt Size
i0 Map k a
m0
  | Size
i0 Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Map k a -> Size
forall k a. Map k a -> Size
size Map k a
m0 = (Map k a
m0, Map k a
forall k a. Map k a
Tip)
  | Bool
otherwise = StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Map k a) (Map k a) -> (Map k a, Map k a))
-> StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. (a -> b) -> a -> b
$ Size -> Map k a -> StrictPair (Map k a) (Map k a)
forall {k} {a}. Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i0 Map k a
m0
  where
    go :: Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i Map k a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
m
    go !Size
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip
    go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
      = case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
          Ordering
LT -> case Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i Map k a
l of
                  Map k a
ll :*: Map k a
lr -> Map k a
ll Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
lr Map k a
r
          Ordering
GT -> case Size -> Map k a -> StrictPair (Map k a) (Map k a)
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Map k a
r of
                  Map k a
rl :*: Map k a
rr -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
rl Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
rr
          Ordering
EQ -> Map k a
l Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
r
      where sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l

-- | \(O(\log n)\). Update the element at /index/, i.e. by its zero-based index in
-- the sequence sorted by keys. If the /index/ is out of range (less than zero,
-- greater or equal to 'size' of the map), 'error' is called.
--
-- > updateAt (\ _ _ -> Just "x") 0    (fromList [(5,"a"), (3,"b")]) == fromList [(3, "x"), (5, "a")]
-- > updateAt (\ _ _ -> Just "x") 1    (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "x")]
-- > updateAt (\ _ _ -> Just "x") 2    (fromList [(5,"a"), (3,"b")])    Error: index out of range
-- > updateAt (\ _ _ -> Just "x") (-1) (fromList [(5,"a"), (3,"b")])    Error: index out of range
-- > updateAt (\_ _  -> Nothing)  0    (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
-- > updateAt (\_ _  -> Nothing)  1    (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > updateAt (\_ _  -> Nothing)  2    (fromList [(5,"a"), (3,"b")])    Error: index out of range
-- > updateAt (\_ _  -> Nothing)  (-1) (fromList [(5,"a"), (3,"b")])    Error: index out of range

updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a
updateAt :: forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f !Size
i Map k a
t =
  case Map k a
t of
    Map k a
Tip -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.updateAt: index out of range"
    Bin Size
sx k
kx a
x Map k a
l Map k a
r -> case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
      Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> Size -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f Size
i Map k a
l) Map k a
r
      Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> Size -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Map k a
r)
      Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
              Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
              Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
      where
        sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l

-- | \(O(\log n)\). Delete the element at /index/, i.e. by its zero-based index in
-- the sequence sorted by keys. If the /index/ is out of range (less than zero,
-- greater or equal to 'size' of the map), 'error' is called.
--
-- > deleteAt 0  (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
-- > deleteAt 1  (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > deleteAt 2 (fromList [(5,"a"), (3,"b")])     Error: index out of range
-- > deleteAt (-1) (fromList [(5,"a"), (3,"b")])  Error: index out of range

deleteAt :: Int -> Map k a -> Map k a
deleteAt :: forall k a. Size -> Map k a -> Map k a
deleteAt !Size
i Map k a
t =
  case Map k a
t of
    Map k a
Tip -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.deleteAt: index out of range"
    Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
      Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (Size -> Map k a -> Map k a
forall k a. Size -> Map k a -> Map k a
deleteAt Size
i Map k a
l) Map k a
r
      Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (Size -> Map k a -> Map k a
forall k a. Size -> Map k a -> Map k a
deleteAt (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Map k a
r)
      Ordering
EQ -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
      where
        sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l


{--------------------------------------------------------------------
  Minimal, Maximal
--------------------------------------------------------------------}

lookupMinSure :: k -> a -> Map k a -> (k, a)
lookupMinSure :: forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
a Map k a
Tip = (k
k, a
a)
lookupMinSure k
_ a
_ (Bin Size
_ k
k a
a Map k a
l Map k a
_) = k -> a -> Map k a -> (k, a)
forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
a Map k a
l

-- | \(O(\log n)\). The minimal key of the map. Returns 'Nothing' if the map is empty.
--
-- > lookupMin (fromList [(5,"a"), (3,"b")]) == Just (3,"b")
-- > lookupMin empty = Nothing
--
-- @since 0.5.9

lookupMin :: Map k a -> Maybe (k,a)
lookupMin :: forall k a. Map k a -> Maybe (k, a)
lookupMin Map k a
Tip = Maybe (k, a)
forall a. Maybe a
Nothing
lookupMin (Bin Size
_ k
k a
x Map k a
l Map k a
_) = (k, a) -> Maybe (k, a)
forall a. a -> Maybe a
Just ((k, a) -> Maybe (k, a)) -> (k, a) -> Maybe (k, a)
forall a b. (a -> b) -> a -> b
$! k -> a -> Map k a -> (k, a)
forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
x Map k a
l

-- | \(O(\log n)\). The minimal key of the map. Calls 'error' if the map is empty.
--
-- > findMin (fromList [(5,"a"), (3,"b")]) == (3,"b")
-- > findMin empty                            Error: empty map has no minimal element

findMin :: Map k a -> (k,a)
findMin :: forall k a. Map k a -> (k, a)
findMin Map k a
t
  | Just (k, a)
r <- Map k a -> Maybe (k, a)
forall k a. Map k a -> Maybe (k, a)
lookupMin Map k a
t = (k, a)
r
  | Bool
otherwise = [Char] -> (k, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findMin: empty map has no minimal element"

lookupMaxSure :: k -> a -> Map k a -> (k, a)
lookupMaxSure :: forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
a Map k a
Tip = (k
k, a
a)
lookupMaxSure k
_ a
_ (Bin Size
_ k
k a
a Map k a
_ Map k a
r) = k -> a -> Map k a -> (k, a)
forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
a Map k a
r

-- | \(O(\log n)\). The maximal key of the map. Returns 'Nothing' if the map is empty.
--
-- > lookupMax (fromList [(5,"a"), (3,"b")]) == Just (5,"a")
-- > lookupMax empty = Nothing
--
-- @since 0.5.9

lookupMax :: Map k a -> Maybe (k, a)
lookupMax :: forall k a. Map k a -> Maybe (k, a)
lookupMax Map k a
Tip = Maybe (k, a)
forall a. Maybe a
Nothing
lookupMax (Bin Size
_ k
k a
x Map k a
_ Map k a
r) = (k, a) -> Maybe (k, a)
forall a. a -> Maybe a
Just ((k, a) -> Maybe (k, a)) -> (k, a) -> Maybe (k, a)
forall a b. (a -> b) -> a -> b
$! k -> a -> Map k a -> (k, a)
forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
x Map k a
r

-- | \(O(\log n)\). The maximal key of the map. Calls 'error' if the map is empty.
--
-- > findMax (fromList [(5,"a"), (3,"b")]) == (5,"a")
-- > findMax empty                            Error: empty map has no maximal element

findMax :: Map k a -> (k,a)
findMax :: forall k a. Map k a -> (k, a)
findMax Map k a
t
  | Just (k, a)
r <- Map k a -> Maybe (k, a)
forall k a. Map k a -> Maybe (k, a)
lookupMax Map k a
t = (k, a)
r
  | Bool
otherwise = [Char] -> (k, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findMax: empty map has no maximal element"

-- | \(O(\log n)\). Delete the minimal key. Returns an empty map if the map is empty.
--
-- > deleteMin (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(5,"a"), (7,"c")]
-- > deleteMin empty == empty

deleteMin :: Map k a -> Map k a
deleteMin :: forall k a. Map k a -> Map k a
deleteMin (Bin Size
_ k
_  a
_ Map k a
Tip Map k a
r)  = Map k a
r
deleteMin (Bin Size
_ k
kx a
x Map k a
l Map k a
r)    = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (Map k a -> Map k a
forall k a. Map k a -> Map k a
deleteMin Map k a
l) Map k a
r
deleteMin Map k a
Tip                 = Map k a
forall k a. Map k a
Tip

-- | \(O(\log n)\). Delete the maximal key. Returns an empty map if the map is empty.
--
-- > deleteMax (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(3,"b"), (5,"a")]
-- > deleteMax empty == empty

deleteMax :: Map k a -> Map k a
deleteMax :: forall k a. Map k a -> Map k a
deleteMax (Bin Size
_ k
_  a
_ Map k a
l Map k a
Tip)  = Map k a
l
deleteMax (Bin Size
_ k
kx a
x Map k a
l Map k a
r)    = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (Map k a -> Map k a
forall k a. Map k a -> Map k a
deleteMax Map k a
r)
deleteMax Map k a
Tip                 = Map k a
forall k a. Map k a
Tip

-- | \(O(\log n)\). Update the value at the minimal key.
--
-- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]
-- > updateMin (\ _ -> Nothing)         (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMin :: (a -> Maybe a) -> Map k a -> Map k a
updateMin :: forall a k. (a -> Maybe a) -> Map k a -> Map k a
updateMin a -> Maybe a
f Map k a
m
  = (k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey (\k
_ a
x -> a -> Maybe a
f a
x) Map k a
m

-- | \(O(\log n)\). Update the value at the maximal key.
--
-- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]
-- > updateMax (\ _ -> Nothing)         (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMax :: (a -> Maybe a) -> Map k a -> Map k a
updateMax :: forall a k. (a -> Maybe a) -> Map k a -> Map k a
updateMax a -> Maybe a
f Map k a
m
  = (k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey (\k
_ a
x -> a -> Maybe a
f a
x) Map k a
m


-- | \(O(\log n)\). Update the value at the minimal key.
--
-- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]
-- > updateMinWithKey (\ _ _ -> Nothing)                     (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey :: forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey k -> a -> Maybe a
_ Map k a
Tip                 = Map k a
forall k a. Map k a
Tip
updateMinWithKey k -> a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
Tip Map k a
r) = case k -> a -> Maybe a
f k
kx a
x of
                                           Maybe a
Nothing -> Map k a
r
                                           Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
forall k a. Map k a
Tip Map k a
r
updateMinWithKey k -> a -> Maybe a
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r)    = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey k -> a -> Maybe a
f Map k a
l) Map k a
r

-- | \(O(\log n)\). Update the value at the maximal key.
--
-- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]
-- > updateMaxWithKey (\ _ _ -> Nothing)                     (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey :: forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey k -> a -> Maybe a
_ Map k a
Tip                 = Map k a
forall k a. Map k a
Tip
updateMaxWithKey k -> a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
l Map k a
Tip) = case k -> a -> Maybe a
f k
kx a
x of
                                           Maybe a
Nothing -> Map k a
l
                                           Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
forall k a. Map k a
Tip
updateMaxWithKey k -> a -> Maybe a
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r)    = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey k -> a -> Maybe a
f Map k a
r)

-- | \(O(\log n)\). Retrieves the minimal (key,value) pair of the map, and
-- the map stripped of that element, or 'Nothing' if passed an empty map.
--
-- > minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a")
-- > minViewWithKey empty == Nothing

minViewWithKey :: Map k a -> Maybe ((k,a), Map k a)
minViewWithKey :: forall k a. Map k a -> Maybe ((k, a), Map k a)
minViewWithKey Map k a
Tip = Maybe ((k, a), Map k a)
forall a. Maybe a
Nothing
minViewWithKey (Bin Size
_ k
k a
x Map k a
l Map k a
r) = ((k, a), Map k a) -> Maybe ((k, a), Map k a)
forall a. a -> Maybe a
Just (((k, a), Map k a) -> Maybe ((k, a), Map k a))
-> ((k, a), Map k a) -> Maybe ((k, a), Map k a)
forall a b. (a -> b) -> a -> b
$
  case k -> a -> Map k a -> Map k a -> MinView k a
forall k a. k -> a -> Map k a -> Map k a -> MinView k a
minViewSure k
k a
x Map k a
l Map k a
r of
    MinView k
km a
xm Map k a
t -> ((k
km, a
xm), Map k a
t)
-- We inline this to give GHC the best possible chance of getting
-- rid of the Maybe and pair constructors, as well as the thunk under
-- the Just.
{-# INLINE minViewWithKey #-}

-- | \(O(\log n)\). Retrieves the maximal (key,value) pair of the map, and
-- the map stripped of that element, or 'Nothing' if passed an empty map.
--
-- > maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b")
-- > maxViewWithKey empty == Nothing

maxViewWithKey :: Map k a -> Maybe ((k,a), Map k a)
maxViewWithKey :: forall k a. Map k a -> Maybe ((k, a), Map k a)
maxViewWithKey Map k a
Tip = Maybe ((k, a), Map k a)
forall a. Maybe a
Nothing
maxViewWithKey (Bin Size
_ k
k a
x Map k a
l Map k a
r) = ((k, a), Map k a) -> Maybe ((k, a), Map k a)
forall a. a -> Maybe a
Just (((k, a), Map k a) -> Maybe ((k, a), Map k a))
-> ((k, a), Map k a) -> Maybe ((k, a), Map k a)
forall a b. (a -> b) -> a -> b
$
  case k -> a -> Map k a -> Map k a -> MaxView k a
forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure k
k a
x Map k a
l Map k a
r of
    MaxView k
km a
xm Map k a
t -> ((k
km, a
xm), Map k a
t)
-- See note on inlining at minViewWithKey
{-# INLINE maxViewWithKey #-}

-- | \(O(\log n)\). Retrieves the value associated with minimal key of the
-- map, and the map stripped of that element, or 'Nothing' if passed an
-- empty map.
--
-- > minView (fromList [(5,"a"), (3,"b")]) == Just ("b", singleton 5 "a")
-- > minView empty == Nothing

minView :: Map k a -> Maybe (a, Map k a)
minView :: forall k a. Map k a -> Maybe (a, Map k a)
minView Map k a
t = case Map k a -> Maybe ((k, a), Map k a)
forall k a. Map k a -> Maybe ((k, a), Map k a)
minViewWithKey Map k a
t of
              Maybe ((k, a), Map k a)
Nothing -> Maybe (a, Map k a)
forall a. Maybe a
Nothing
              Just ~((k
_, a
x), Map k a
t') -> (a, Map k a) -> Maybe (a, Map k a)
forall a. a -> Maybe a
Just (a
x, Map k a
t')

-- | \(O(\log n)\). Retrieves the value associated with maximal key of the
-- map, and the map stripped of that element, or 'Nothing' if passed an
-- empty map.
--
-- > maxView (fromList [(5,"a"), (3,"b")]) == Just ("a", singleton 3 "b")
-- > maxView empty == Nothing

maxView :: Map k a -> Maybe (a, Map k a)
maxView :: forall k a. Map k a -> Maybe (a, Map k a)
maxView Map k a
t = case Map k a -> Maybe ((k, a), Map k a)
forall k a. Map k a -> Maybe ((k, a), Map k a)
maxViewWithKey Map k a
t of
              Maybe ((k, a), Map k a)
Nothing -> Maybe (a, Map k a)
forall a. Maybe a
Nothing
              Just ~((k
_, a
x), Map k a
t') -> (a, Map k a) -> Maybe (a, Map k a)
forall a. a -> Maybe a
Just (a
x, Map k a
t')

{--------------------------------------------------------------------
  Union.
--------------------------------------------------------------------}
-- | The union of a list of maps:
--   (@'unions' == 'Prelude.foldl' 'union' 'empty'@).
--
-- > unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "b"), (5, "a"), (7, "C")]
-- > unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]
-- >     == fromList [(3, "B3"), (5, "A3"), (7, "C")]

unions :: (Foldable f, Ord k) => f (Map k a) -> Map k a
unions :: forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
f (Map k a) -> Map k a
unions f (Map k a)
ts
  = (Map k a -> Map k a -> Map k a)
-> Map k a -> f (Map k a) -> Map k a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Map k a -> Map k a -> Map k a
forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
forall k a. Map k a
empty f (Map k a)
ts
#if __GLASGOW_HASKELL__
{-# INLINABLE unions #-}
#endif

-- | The union of a list of maps, with a combining operation:
--   (@'unionsWith' f == 'Prelude.foldl' ('unionWith' f) 'empty'@).
--
-- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

unionsWith :: (Foldable f, Ord k) => (a->a->a) -> f (Map k a) -> Map k a
unionsWith :: forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
(a -> a -> a) -> f (Map k a) -> Map k a
unionsWith a -> a -> a
f f (Map k a)
ts
  = (Map k a -> Map k a -> Map k a)
-> Map k a -> f (Map k a) -> Map k a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' ((a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f) Map k a
forall k a. Map k a
empty f (Map k a)
ts
#if __GLASGOW_HASKELL__
{-# INLINABLE unionsWith #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and @t2@.
-- It prefers @t1@ when duplicate keys are encountered,
-- i.e. (@'union' == 'unionWith' 'const'@).
--
-- > union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

union :: Ord k => Map k a -> Map k a -> Map k a
union :: forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
t1 Map k a
Tip  = Map k a
t1
union Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
insertR k
k a
x Map k a
t1
union (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
k a
x Map k a
t2
union Map k a
Tip Map k a
t2 = Map k a
t2
union t1 :: Map k a
t1@(Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case k -> Map k a -> (Map k a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
split k
k1 Map k a
t2 of
  (Map k a
l2, Map k a
r2) | Map k a
l1l2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r1 -> Map k a
t1
           | Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
           where !l1l2 :: Map k a
l1l2 = Map k a -> Map k a -> Map k a
forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
l1 Map k a
l2
                 !r1r2 :: Map k a
r1r2 = Map k a -> Map k a -> Map k a
forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE union #-}
#endif

{--------------------------------------------------------------------
  Union with a combining function
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Union with a combining function.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]
--
-- Also see the performance note on 'fromListWith'.

unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
-- QuickCheck says pointer equality never happens here.
unionWith :: forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
_f Map k a
t1 Map k a
Tip = Map k a
t1
unionWith a -> a -> a
f Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR a -> a -> a
f k
k a
x Map k a
t1
unionWith a -> a -> a
f (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith a -> a -> a
f k
k a
x Map k a
t2
unionWith a -> a -> a
_f Map k a
Tip Map k a
t2 = Map k a
t2
unionWith a -> a -> a
f (Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case k -> Map k a -> (Map k a, Maybe a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k1 Map k a
t2 of
  (Map k a
l2, Maybe a
mb, Map k a
r2) -> case Maybe a
mb of
      Maybe a
Nothing -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
      Just a
x2 -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 (a -> a -> a
f a
x1 a
x2) Map k a
l1l2 Map k a
r1r2
    where !l1l2 :: Map k a
l1l2 = (a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f Map k a
l1 Map k a
l2
          !r1r2 :: Map k a
r1r2 = (a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE unionWith #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- Union with a combining function.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
-- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]
--
-- Also see the performance note on 'fromListWith'.

unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
_f Map k a
t1 Map k a
Tip = Map k a
t1
unionWithKey k -> a -> a -> a
f Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR k -> a -> a -> a
f k
k a
x Map k a
t1
unionWithKey k -> a -> a -> a
f (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey k -> a -> a -> a
f k
k a
x Map k a
t2
unionWithKey k -> a -> a -> a
_f Map k a
Tip Map k a
t2 = Map k a
t2
unionWithKey k -> a -> a -> a
f (Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case k -> Map k a -> (Map k a, Maybe a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k1 Map k a
t2 of
  (Map k a
l2, Maybe a
mb, Map k a
r2) -> case Maybe a
mb of
      Maybe a
Nothing -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
      Just a
x2 -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 (k -> a -> a -> a
f k
k1 a
x1 a
x2) Map k a
l1l2 Map k a
r1r2
    where !l1l2 :: Map k a
l1l2 = (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
f Map k a
l1 Map k a
l2
          !r1r2 :: Map k a
r1r2 = (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
f Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE unionWithKey #-}
#endif

{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}

-- We don't currently attempt to use any pointer equality tricks for
-- 'difference'. To do so, we'd have to match on the first argument
-- and split the second. Unfortunately, the proof of the time bound
-- relies on doing it the way we do, and it's not clear whether that
-- bound holds the other way.

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Difference of two maps.
-- Return elements of the first map not existing in the second map.
--
-- > difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

difference :: Ord k => Map k a -> Map k b -> Map k a
difference :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
Tip Map k b
_   = Map k a
forall k a. Map k a
Tip
difference Map k a
t1 Map k b
Tip  = Map k a
t1
difference Map k a
t1 (Bin Size
_ k
k b
_ Map k b
l2 Map k b
r2) = case k -> Map k a -> (Map k a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
split k
k Map k a
t1 of
  (Map k a
l1, Map k a
r1)
    | Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l1l2 Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
r1r2 Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Map k a -> Size
forall k a. Map k a -> Size
size Map k a
t1 -> Map k a
t1
    | Bool
otherwise -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
    where
      !l1l2 :: Map k a
l1l2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
l1 Map k b
l2
      !r1r2 :: Map k a
r1r2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE difference #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Remove all keys in a 'Set' from a 'Map'.
--
-- @
-- m \`withoutKeys\` s = 'filterWithKey' (\\k _ -> k ``Set.notMember`` s) m
-- m \`withoutKeys\` s = m ``difference`` 'fromSet' (const ()) s
-- @
--
-- @since 0.5.8

withoutKeys :: Ord k => Map k a -> Set k -> Map k a
withoutKeys :: forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
Tip Set k
_ = Map k a
forall k a. Map k a
Tip
withoutKeys Map k a
m Set k
Set.Tip = Map k a
m
withoutKeys Map k a
m (Set.Bin Size
_ k
k Set k
ls Set k
rs) = case k -> Map k a -> (Map k a, Bool, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k a
m of
  (Map k a
lm, Bool
b, Map k a
rm)
     | Bool -> Bool
not Bool
b Bool -> Bool -> Bool
&& Map k a
lm' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
lm Bool -> Bool -> Bool
&& Map k a
rm' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
rm -> Map k a
m
     | Bool
otherwise -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
lm' Map k a
rm'
     where
       !lm' :: Map k a
lm' = Map k a -> Set k -> Map k a
forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
lm Set k
ls
       !rm' :: Map k a
rm' = Map k a -> Set k -> Map k a
forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
rm Set k
rs
#if __GLASGOW_HASKELL__
{-# INLINABLE withoutKeys #-}
#endif

-- | \(O(n+m)\). Difference with a combining function.
-- When two equal keys are
-- encountered, the combining function is applied to the values of these keys.
-- If it returns 'Nothing', the element is discarded (proper set difference). If
-- it returns (@'Just' y@), the element is updated with a new value @y@.
--
-- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing
-- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])
-- >     == singleton 3 "b:B"
differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith :: forall k a b.
Ord k =>
(a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith a -> b -> Maybe a
f = SimpleWhenMissing k a a
-> SimpleWhenMissing k b a
-> SimpleWhenMatched k a b a
-> Map k a
-> Map k b
-> Map k a
forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge SimpleWhenMissing k a a
forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing SimpleWhenMissing k b a
forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing (SimpleWhenMatched k a b a -> Map k a -> Map k b -> Map k a)
-> SimpleWhenMatched k a b a -> Map k a -> Map k b -> Map k a
forall a b. (a -> b) -> a -> b
$
       (k -> a -> b -> Maybe a) -> SimpleWhenMatched k a b a
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched (\k
_ a
x b
y -> a -> b -> Maybe a
f a
x b
y)
#if __GLASGOW_HASKELL__
{-# INLINABLE differenceWith #-}
#endif

-- | \(O(n+m)\). Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns 'Nothing', the element is discarded (proper set difference). If
-- it returns (@'Just' y@), the element is updated with a new value @y@.
--
-- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing
-- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])
-- >     == singleton 3 "3:b|B"

differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey :: forall k a b.
Ord k =>
(k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey k -> a -> b -> Maybe a
f =
  SimpleWhenMissing k a a
-> SimpleWhenMissing k b a
-> SimpleWhenMatched k a b a
-> Map k a
-> Map k b
-> Map k a
forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge SimpleWhenMissing k a a
forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing SimpleWhenMissing k b a
forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing ((k -> a -> b -> Maybe a) -> SimpleWhenMatched k a b a
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched k -> a -> b -> Maybe a
f)
#if __GLASGOW_HASKELL__
{-# INLINABLE differenceWithKey #-}
#endif


{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Intersection of two maps.
-- Return data in the first map for the keys existing in both maps.
-- (@'intersection' m1 m2 == 'intersectionWith' 'const' m1 m2@).
--
-- > intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

intersection :: Ord k => Map k a -> Map k b -> Map k a
intersection :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
Tip Map k b
_ = Map k a
forall k a. Map k a
Tip
intersection Map k a
_ Map k b
Tip = Map k a
forall k a. Map k a
Tip
intersection t1 :: Map k a
t1@(Bin Size
_ k
k a
x Map k a
l1 Map k a
r1) Map k b
t2
  | Bool
mb = if Map k a
l1l2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r1
         then Map k a
t1
         else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k a
x Map k a
l1l2 Map k a
r1r2
  | Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
  where
    !(Map k b
l2, Bool
mb, Map k b
r2) = k -> Map k b -> (Map k b, Bool, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k b
t2
    !l1l2 :: Map k a
l1l2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
l1 Map k b
l2
    !r1r2 :: Map k a
r1r2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersection #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Restrict a 'Map' to only those keys
-- found in a 'Set'.
--
-- @
-- m \`restrictKeys\` s = 'filterWithKey' (\\k _ -> k ``Set.member`` s) m
-- m \`restrictKeys\` s = m ``intersection`` 'fromSet' (const ()) s
-- @
--
-- @since 0.5.8
restrictKeys :: Ord k => Map k a -> Set k -> Map k a
restrictKeys :: forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
Tip Set k
_ = Map k a
forall k a. Map k a
Tip
restrictKeys Map k a
_ Set k
Set.Tip = Map k a
forall k a. Map k a
Tip
restrictKeys m :: Map k a
m@(Bin Size
_ k
k a
x Map k a
l1 Map k a
r1) Set k
s
  | Bool
b = if Map k a
l1l2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r1
        then Map k a
m
        else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k a
x Map k a
l1l2 Map k a
r1r2
  | Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
  where
    !(Set k
l2, Bool
b, Set k
r2) = k -> Set k -> (Set k, Bool, Set k)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
Set.splitMember k
k Set k
s
    !l1l2 :: Map k a
l1l2 = Map k a -> Set k -> Map k a
forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
l1 Set k
l2
    !r1r2 :: Map k a
r1r2 = Map k a -> Set k -> Map k a
forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
r1 Set k
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE restrictKeys #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Intersection with a combining function.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c
-- We have no hope of pointer equality tricks here because every single
-- element in the result will be a thunk.
intersectionWith :: forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
_f Map k a
Tip Map k b
_ = Map k c
forall k a. Map k a
Tip
intersectionWith a -> b -> c
_f Map k a
_ Map k b
Tip = Map k c
forall k a. Map k a
Tip
intersectionWith a -> b -> c
f (Bin Size
_ k
k a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case Maybe b
mb of
    Just b
x2 -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k (a -> b -> c
f a
x1 b
x2) Map k c
l1l2 Map k c
r1r2
    Maybe b
Nothing -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l1l2 Map k c
r1r2
  where
    !(Map k b
l2, Maybe b
mb, Map k b
r2) = k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k Map k b
t2
    !l1l2 :: Map k c
l1l2 = (a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
f Map k a
l1 Map k b
l2
    !r1r2 :: Map k c
r1r2 = (a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
f Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersectionWith #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Intersection with a combining function.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey :: forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
_f Map k a
Tip Map k b
_ = Map k c
forall k a. Map k a
Tip
intersectionWithKey k -> a -> b -> c
_f Map k a
_ Map k b
Tip = Map k c
forall k a. Map k a
Tip
intersectionWithKey k -> a -> b -> c
f (Bin Size
_ k
k a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case Maybe b
mb of
    Just b
x2 -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k (k -> a -> b -> c
f k
k a
x1 b
x2) Map k c
l1l2 Map k c
r1r2
    Maybe b
Nothing -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l1l2 Map k c
r1r2
  where
    !(Map k b
l2, Maybe b
mb, Map k b
r2) = k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k Map k b
t2
    !l1l2 :: Map k c
l1l2 = (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
f Map k a
l1 Map k b
l2
    !r1r2 :: Map k c
r1r2 = (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
f Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersectionWithKey #-}
#endif

{--------------------------------------------------------------------
  Disjoint
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Check whether the key sets of two
-- maps are disjoint (i.e., their 'intersection' is empty).
--
-- > disjoint (fromList [(2,'a')]) (fromList [(1,()), (3,())])   == True
-- > disjoint (fromList [(2,'a')]) (fromList [(1,'a'), (2,'b')]) == False
-- > disjoint (fromList [])        (fromList [])                 == True
--
-- @
-- xs ``disjoint`` ys = null (xs ``intersection`` ys)
-- @
--
-- @since 0.6.2.1

-- See 'Data.Set.Internal.isSubsetOfX' for some background
-- on the implementation design.
disjoint :: Ord k => Map k a -> Map k b -> Bool
disjoint :: forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
Tip Map k b
_ = Bool
True
disjoint Map k a
_ Map k b
Tip = Bool
True
disjoint (Bin Size
1 k
k a
_ Map k a
_ Map k a
_) Map k b
t = k
k k -> Map k b -> Bool
forall k a. Ord k => k -> Map k a -> Bool
`notMember` Map k b
t
disjoint (Bin Size
_ k
k a
_ Map k a
l Map k a
r) Map k b
t
  = Bool -> Bool
not Bool
found Bool -> Bool -> Bool
&& Map k a -> Map k b -> Bool
forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
l Map k b
lt Bool -> Bool -> Bool
&& Map k a -> Map k b -> Bool
forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
r Map k b
gt
  where
    (Map k b
lt,Bool
found,Map k b
gt) = k -> Map k b -> (Map k b, Bool, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k b
t

{--------------------------------------------------------------------
  Compose
--------------------------------------------------------------------}
-- | Relate the keys of one map to the values of
-- the other, by using the values of the former as keys for lookups
-- in the latter.
--
-- Complexity: \( O (n * \log(m)) \), where \(m\) is the size of the first argument
--
-- > compose (fromList [('a', "A"), ('b', "B")]) (fromList [(1,'a'),(2,'b'),(3,'z')]) = fromList [(1,"A"),(2,"B")]
--
-- @
-- ('compose' bc ab '!?') = (bc '!?') <=< (ab '!?')
-- @
--
-- __Note:__ Prior to v0.6.4, "Data.Map.Strict" exposed a version of
-- 'compose' that forced the values of the output 'Map'. This version does not
-- force these values.
--
-- @since 0.6.3.1
compose :: Ord b => Map b c -> Map a b -> Map a c
compose :: forall b c a. Ord b => Map b c -> Map a b -> Map a c
compose Map b c
bc !Map a b
ab
  | Map b c -> Bool
forall k a. Map k a -> Bool
null Map b c
bc = Map a c
forall k a. Map k a
empty
  | Bool
otherwise = (b -> Maybe c) -> Map a b -> Map a c
forall a b k. (a -> Maybe b) -> Map k a -> Map k b
mapMaybe (Map b c
bc Map b c -> b -> Maybe c
forall k a. Ord k => Map k a -> k -> Maybe a
!?) Map a b
ab

-- | A tactic for dealing with keys present in one map but not the other in
-- 'merge' or 'mergeA'.
--
-- A tactic of type @ WhenMissing f k x z @ is an abstract representation
-- of a function of type @ k -> x -> f (Maybe z) @.
--
-- @since 0.5.9

data WhenMissing f k x y = WhenMissing
  { forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree :: Map k x -> f (Map k y)
  , forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey :: k -> x -> f (Maybe y)}

-- | @since 0.5.9
instance (Applicative f, Monad f) => Functor (WhenMissing f k x) where
  fmap :: forall a b. (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
fmap = (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
forall (f :: * -> *) a b k x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing
  {-# INLINE fmap #-}

-- | @since 0.5.9
instance (Applicative f, Monad f)
         => Category.Category (WhenMissing f k) where
  id :: forall a. WhenMissing f k a a
id = WhenMissing f k a a
forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing
  WhenMissing f k b c
f . :: forall b c a.
WhenMissing f k b c -> WhenMissing f k a b -> WhenMissing f k a c
. WhenMissing f k a b
g = (k -> a -> f (Maybe c)) -> WhenMissing f k a c
forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing ((k -> a -> f (Maybe c)) -> WhenMissing f k a c)
-> (k -> a -> f (Maybe c)) -> WhenMissing f k a c
forall a b. (a -> b) -> a -> b
$
    \ k
k a
x -> WhenMissing f k a b -> k -> a -> f (Maybe b)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k a b
g k
k a
x f (Maybe b) -> (Maybe b -> f (Maybe c)) -> f (Maybe c)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe b
y ->
         case Maybe b
y of
           Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
           Just b
q -> WhenMissing f k b c -> k -> b -> f (Maybe c)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k b c
f k
k b
q
  {-# INLINE id #-}
  {-# INLINE (.) #-}

-- | Equivalent to @ ReaderT k (ReaderT x (MaybeT f)) @.
--
-- @since 0.5.9
instance (Applicative f, Monad f) => Applicative (WhenMissing f k x) where
  pure :: forall a. a -> WhenMissing f k x a
pure a
x = (k -> x -> a) -> WhenMissing f k x a
forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> y) -> WhenMissing f k x y
mapMissing (\ k
_ x
_ -> a
x)
  WhenMissing f k x (a -> b)
f <*> :: forall a b.
WhenMissing f k x (a -> b)
-> WhenMissing f k x a -> WhenMissing f k x b
<*> WhenMissing f k x a
g = (k -> x -> f (Maybe b)) -> WhenMissing f k x b
forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing ((k -> x -> f (Maybe b)) -> WhenMissing f k x b)
-> (k -> x -> f (Maybe b)) -> WhenMissing f k x b
forall a b. (a -> b) -> a -> b
$ \k
k x
x -> do
         res1 <- WhenMissing f k x (a -> b) -> k -> x -> f (Maybe (a -> b))
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x (a -> b)
f k
k x
x
         case res1 of
           Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
           Just a -> b
r -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMissing f k x a -> k -> x -> f (Maybe a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
g k
k x
x
  {-# INLINE pure #-}
  {-# INLINE (<*>) #-}

-- | Equivalent to @ ReaderT k (ReaderT x (MaybeT f)) @.
--
-- @since 0.5.9
instance (Applicative f, Monad f) => Monad (WhenMissing f k x) where
  WhenMissing f k x a
m >>= :: forall a b.
WhenMissing f k x a
-> (a -> WhenMissing f k x b) -> WhenMissing f k x b
>>= a -> WhenMissing f k x b
f = (k -> x -> f (Maybe b)) -> WhenMissing f k x b
forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing ((k -> x -> f (Maybe b)) -> WhenMissing f k x b)
-> (k -> x -> f (Maybe b)) -> WhenMissing f k x b
forall a b. (a -> b) -> a -> b
$ \k
k x
x -> do
         res1 <- WhenMissing f k x a -> k -> x -> f (Maybe a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
m k
k x
x
         case res1 of
           Maybe a
Nothing