Safe Haskell | None |
---|---|

Language | GHC2021 |

Boolean formulas without quantifiers and without negation. Such a formula consists of variables, conjunctions (and), and disjunctions (or).

This module is used to represent minimal complete definitions for classes.

# Documentation

data BooleanFormula a Source #

Var a | |

And [LBooleanFormula a] | |

Or [LBooleanFormula a] | |

Parens (LBooleanFormula a) |

#### Instances

type LBooleanFormula a = LocatedL (BooleanFormula a) Source #

mkFalse :: BooleanFormula a Source #

mkTrue :: BooleanFormula a Source #

mkAnd :: Eq a => [LBooleanFormula a] -> BooleanFormula a Source #

mkOr :: Eq a => [LBooleanFormula a] -> BooleanFormula a Source #

mkVar :: a -> BooleanFormula a Source #

isFalse :: BooleanFormula a -> Bool Source #

isTrue :: BooleanFormula a -> Bool Source #

simplify :: Eq a => (a -> Maybe Bool) -> BooleanFormula a -> BooleanFormula a Source #

isUnsatisfied :: Eq a => (a -> Bool) -> BooleanFormula a -> Maybe (BooleanFormula a) Source #

implies :: Uniquable a => BooleanFormula a -> BooleanFormula a -> Bool Source #

impliesAtom :: Eq a => BooleanFormula a -> a -> Bool Source #

pprBooleanFormula :: (Rational -> a -> SDoc) -> Rational -> BooleanFormula a -> SDoc Source #

pprBooleanFormulaNice :: Outputable a => BooleanFormula a -> SDoc Source #