{- (c) The GRASP/AQUA Project, Glasgow University, 1993-1998 \section[Specialise]{Stamping out overloading, and (optionally) polymorphism} -} module GHC.Core.Opt.Specialise ( specProgram, specUnfolding ) where import GHC.Prelude import GHC.Driver.DynFlags import GHC.Driver.Config import GHC.Driver.Config.Diagnostic import GHC.Driver.Config.Core.Rules ( initRuleOpts ) import GHC.Core.Type hiding( substTy, substCo, extendTvSubst, zapSubst ) import GHC.Core.Multiplicity import GHC.Core.SimpleOpt( defaultSimpleOpts, simpleOptExprWith ) import GHC.Core.Predicate import GHC.Core.Coercion( Coercion ) import GHC.Core.Opt.Monad import qualified GHC.Core.Subst as Core import GHC.Core.Unfold.Make import GHC.Core import GHC.Core.Make ( mkLitRubbish ) import GHC.Core.Unify ( tcMatchTy ) import GHC.Core.Rules import GHC.Core.Utils ( exprIsTrivial, exprIsTopLevelBindable , mkCast, exprType , stripTicksTop, mkInScopeSetBndrs ) import GHC.Core.FVs import GHC.Core.TyCo.FVs ( tyCoVarsOfTypeList ) import GHC.Core.Opt.Arity( collectBindersPushingCo ) -- import GHC.Core.Ppr( pprIds ) import GHC.Builtin.Types ( unboxedUnitTy ) import GHC.Data.Maybe ( maybeToList, isJust ) import GHC.Data.Bag import GHC.Data.OrdList import GHC.Data.List.SetOps import GHC.Types.Basic import GHC.Types.Unique.Supply import GHC.Types.Unique.DFM import GHC.Types.Name import GHC.Types.Tickish import GHC.Types.Id.Make ( voidArgId, voidPrimId ) import GHC.Types.Var ( PiTyBinder(..), isLocalVar, isInvisibleFunArg, mkLocalVar ) import GHC.Types.Var.Set import GHC.Types.Var.Env import GHC.Types.Id import GHC.Types.Id.Info import GHC.Types.Error import GHC.Utils.Error ( mkMCDiagnostic ) import GHC.Utils.Monad ( foldlM ) import GHC.Utils.Misc import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Unit.Module( Module ) import GHC.Unit.Module.ModGuts import GHC.Core.Unfold import Data.List( partition ) -- import Data.List.NonEmpty ( NonEmpty (..) ) import GHC.Core.Subst (substTickish) {- ************************************************************************ * * \subsection[notes-Specialise]{Implementation notes [SLPJ, Aug 18 1993]} * * ************************************************************************ These notes describe how we implement specialisation to eliminate overloading. The specialisation pass works on Core syntax, complete with all the explicit dictionary application, abstraction and construction as added by the type checker. The existing type checker remains largely as it is. One important thought: the {\em types} passed to an overloaded function, and the {\em dictionaries} passed are mutually redundant. If the same function is applied to the same type(s) then it is sure to be applied to the same dictionary(s)---or rather to the same {\em values}. (The arguments might look different but they will evaluate to the same value.) Second important thought: we know that we can make progress by treating dictionary arguments as static and worth specialising on. So we can do without binding-time analysis, and instead specialise on dictionary arguments and no others. The basic idea ~~~~~~~~~~~~~~ Suppose we have let f = <f_rhs> in <body> and suppose f is overloaded. STEP 1: CALL-INSTANCE COLLECTION We traverse <body>, accumulating all applications of f to types and dictionaries. (Might there be partial applications, to just some of its types and dictionaries? In principle yes, but in practice the type checker only builds applications of f to all its types and dictionaries, so partial applications could only arise as a result of transformation, and even then I think it's unlikely. In any case, we simply don't accumulate such partial applications.) STEP 2: EQUIVALENCES So now we have a collection of calls to f: f t1 t2 d1 d2 f t3 t4 d3 d4 ... Notice that f may take several type arguments. To avoid ambiguity, we say that f is called at type t1/t2 and t3/t4. We take equivalence classes using equality of the *types* (ignoring the dictionary args, which as mentioned previously are redundant). STEP 3: SPECIALISATION For each equivalence class, choose a representative (f t1 t2 d1 d2), and create a local instance of f, defined thus: f@t1/t2 = <f_rhs> t1 t2 d1 d2 f_rhs presumably has some big lambdas and dictionary lambdas, so lots of simplification will now result. However we don't actually *do* that simplification. Rather, we leave it for the simplifier to do. If we *did* do it, though, we'd get more call instances from the specialised RHS. We can work out what they are by instantiating the call-instance set from f's RHS with the types t1, t2. Add this new id to f's IdInfo, to record that f has a specialised version. Before doing any of this, check that f's IdInfo doesn't already tell us about an existing instance of f at the required type/s. (This might happen if specialisation was applied more than once, or it might arise from user SPECIALIZE pragmas.) Recursion ~~~~~~~~~ Wait a minute! What if f is recursive? Then we can't just plug in its right-hand side, can we? But it's ok. The type checker *always* creates non-recursive definitions for overloaded recursive functions. For example: f x = f (x+x) -- Yes I know its silly becomes f a (d::Num a) = let p = +.sel a d in letrec fl (y::a) = fl (p y y) in fl We still have recursion for non-overloaded functions which we specialise, but the recursive call should get specialised to the same recursive version. Polymorphism 1 ~~~~~~~~~~~~~~ All this is crystal clear when the function is applied to *constant types*; that is, types which have no type variables inside. But what if it is applied to non-constant types? Suppose we find a call of f at type t1/t2. There are two possibilities: (a) The free type variables of t1, t2 are in scope at the definition point of f. In this case there's no problem, we proceed just as before. A common example is as follows. Here's the Haskell: g y = let f x = x+x in f y + f y After typechecking we have g a (d::Num a) (y::a) = let f b (d'::Num b) (x::b) = +.sel b d' x x in +.sel a d (f a d y) (f a d y) Notice that the call to f is at type type "a"; a non-constant type. Both calls to f are at the same type, so we can specialise to give: g a (d::Num a) (y::a) = let f@a (x::a) = +.sel a d x x in +.sel a d (f@a y) (f@a y) (b) The other case is when the type variables in the instance types are *not* in scope at the definition point of f. The example we are working with above is a good case. There are two instances of (+.sel a d), but "a" is not in scope at the definition of +.sel. Can we do anything? Yes, we can "common them up", a sort of limited common sub-expression deal. This would give: g a (d::Num a) (y::a) = let +.sel@a = +.sel a d f@a (x::a) = +.sel@a x x in +.sel@a (f@a y) (f@a y) This can save work, and can't be spotted by the type checker, because the two instances of +.sel weren't originally at the same type. Further notes on (b) * There are quite a few variations here. For example, the defn of +.sel could be floated outside the \y, to attempt to gain laziness. It certainly mustn't be floated outside the \d because the d has to be in scope too. * We don't want to inline f_rhs in this case, because that will duplicate code. Just commoning up the call is the point. * Nothing gets added to +.sel's IdInfo. * Don't bother unless the equivalence class has more than one item! Not clear whether this is all worth it. It is of course OK to simply discard call-instances when passing a big lambda. Polymorphism 2 -- Overloading ~~~~~~~~~~~~~~ Consider a function whose most general type is f :: forall a b. Ord a => [a] -> b -> b There is really no point in making a version of g at Int/Int and another at Int/Bool, because it's only instantiating the type variable "a" which buys us any efficiency. Since g is completely polymorphic in b there ain't much point in making separate versions of g for the different b types. That suggests that we should identify which of g's type variables are constrained (like "a") and which are unconstrained (like "b"). Then when taking equivalence classes in STEP 2, we ignore the type args corresponding to unconstrained type variable. In STEP 3 we make polymorphic versions. Thus: f@t1/ = /\b -> <f_rhs> t1 b d1 d2 We do this. Dictionary floating ~~~~~~~~~~~~~~~~~~~ Consider this f a (d::Num a) = let g = ... in ...(let d1::Ord a = Num.Ord.sel a d in g a d1)... Here, g is only called at one type, but the dictionary isn't in scope at the definition point for g. Usually the type checker would build a definition for d1 which enclosed g, but the transformation system might have moved d1's defn inward. Solution: float dictionary bindings outwards along with call instances. Consider f x = let g p q = p==q h r s = (r+s, g r s) in h x x Before specialisation, leaving out type abstractions we have f df x = let g :: Eq a => a -> a -> Bool g dg p q = == dg p q h :: Num a => a -> a -> (a, Bool) h dh r s = let deq = eqFromNum dh in (+ dh r s, g deq r s) in h df x x After specialising h we get a specialised version of h, like this: h' r s = let deq = eqFromNum df in (+ df r s, g deq r s) But we can't naively make an instance for g from this, because deq is not in scope at the defn of g. Instead, we have to float out the (new) defn of deq to widen its scope. Notice that this floating can't be done in advance -- it only shows up when specialisation is done. User SPECIALIZE pragmas ~~~~~~~~~~~~~~~~~~~~~~~ Specialisation pragmas can be digested by the type checker, and implemented by adding extra definitions along with that of f, in the same way as before f@t1/t2 = <f_rhs> t1 t2 d1 d2 Indeed the pragmas *have* to be dealt with by the type checker, because only it knows how to build the dictionaries d1 and d2! For example g :: Ord a => [a] -> [a] {-# SPECIALIZE f :: [Tree Int] -> [Tree Int] #-} Here, the specialised version of g is an application of g's rhs to the Ord dictionary for (Tree Int), which only the type checker can conjure up. There might not even *be* one, if (Tree Int) is not an instance of Ord! (All the other specialisation has suitable dictionaries to hand from actual calls.) Problem. The type checker doesn't have to hand a convenient <f_rhs>, because it is buried in a complex (as-yet-un-desugared) binding group. Maybe we should say f@t1/t2 = f* t1 t2 d1 d2 where f* is the Id f with an IdInfo which says "inline me regardless!". Indeed all the specialisation could be done in this way. That in turn means that the simplifier has to be prepared to inline absolutely any in-scope let-bound thing. Again, the pragma should permit polymorphism in unconstrained variables: h :: Ord a => [a] -> b -> b {-# SPECIALIZE h :: [Int] -> b -> b #-} We *insist* that all overloaded type variables are specialised to ground types, (and hence there can be no context inside a SPECIALIZE pragma). We *permit* unconstrained type variables to be specialised to - a ground type - or left as a polymorphic type variable but nothing in between. So {-# SPECIALIZE h :: [Int] -> [c] -> [c] #-} is *illegal*. (It can be handled, but it adds complication, and gains the programmer nothing.) SPECIALISING INSTANCE DECLARATIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider instance Foo a => Foo [a] where ... {-# SPECIALIZE instance Foo [Int] #-} The original instance decl creates a dictionary-function definition: dfun.Foo.List :: forall a. Foo a -> Foo [a] The SPECIALIZE pragma just makes a specialised copy, just as for ordinary function definitions: dfun.Foo.List@Int :: Foo [Int] dfun.Foo.List@Int = dfun.Foo.List Int dFooInt The information about what instance of the dfun exist gets added to the dfun's IdInfo in the same way as a user-defined function too. Automatic instance decl specialisation? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Can instance decls be specialised automatically? It's tricky. We could collect call-instance information for each dfun, but then when we specialised their bodies we'd get new call-instances for ordinary functions; and when we specialised their bodies, we might get new call-instances of the dfuns, and so on. This all arises because of the unrestricted mutual recursion between instance decls and value decls. Still, there's no actual problem; it just means that we may not do all the specialisation we could theoretically do. Furthermore, instance decls are usually exported and used non-locally, so we'll want to compile enough to get those specialisations done. Lastly, there's no such thing as a local instance decl, so we can survive solely by spitting out *usage* information, and then reading that back in as a pragma when next compiling the file. So for now, we only specialise instance decls in response to pragmas. SPITTING OUT USAGE INFORMATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To spit out usage information we need to traverse the code collecting call-instance information for all imported (non-prelude?) functions and data types. Then we equivalence-class it and spit it out. This is done at the top-level when all the call instances which escape must be for imported functions and data types. *** Not currently done *** Partial specialisation by pragmas ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ What about partial specialisation: k :: (Ord a, Eq b) => [a] -> b -> b -> [a] {-# SPECIALIZE k :: Eq b => [Int] -> b -> b -> [a] #-} or even {-# SPECIALIZE k :: Eq b => [Int] -> [b] -> [b] -> [a] #-} Seems quite reasonable. Similar things could be done with instance decls: instance (Foo a, Foo b) => Foo (a,b) where ... {-# SPECIALIZE instance Foo a => Foo (a,Int) #-} {-# SPECIALIZE instance Foo b => Foo (Int,b) #-} Ho hum. Things are complex enough without this. I pass. Requirements for the simplifier ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The simplifier has to be able to take advantage of the specialisation. * When the simplifier finds an application of a polymorphic f, it looks in f's IdInfo in case there is a suitable instance to call instead. This converts f t1 t2 d1 d2 ===> f_t1_t2 Note that the dictionaries get eaten up too! * Dictionary selection operations on constant dictionaries must be short-circuited: +.sel Int d ===> +Int The obvious way to do this is in the same way as other specialised calls: +.sel has inside it some IdInfo which tells that if it's applied to the type Int then it should eat a dictionary and transform to +Int. In short, dictionary selectors need IdInfo inside them for constant methods. * Exactly the same applies if a superclass dictionary is being extracted: Eq.sel Int d ===> dEqInt * Something similar applies to dictionary construction too. Suppose dfun.Eq.List is the function taking a dictionary for (Eq a) to one for (Eq [a]). Then we want dfun.Eq.List Int d ===> dEq.List_Int Where does the Eq [Int] dictionary come from? It is built in response to a SPECIALIZE pragma on the Eq [a] instance decl. In short, dfun Ids need IdInfo with a specialisation for each constant instance of their instance declaration. All this uses a single mechanism: the SpecEnv inside an Id What does the specialisation IdInfo look like? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The SpecEnv of an Id maps a list of types (the template) to an expression [Type] |-> Expr For example, if f has this RuleInfo: [Int, a] -> \d:Ord Int. f' a it means that we can replace the call f Int t ===> (\d. f' t) This chucks one dictionary away and proceeds with the specialised version of f, namely f'. What can't be done this way? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There is no way, post-typechecker, to get a dictionary for (say) Eq a from a dictionary for Eq [a]. So if we find ==.sel [t] d we can't transform to eqList (==.sel t d') where eqList :: (a->a->Bool) -> [a] -> [a] -> Bool Of course, we currently have no way to automatically derive eqList, nor to connect it to the Eq [a] instance decl, but you can imagine that it might somehow be possible. Taking advantage of this is permanently ruled out. Still, this is no great hardship, because we intend to eliminate overloading altogether anyway! A note about non-tyvar dictionaries ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some Ids have types like forall a,b,c. Eq a -> Ord [a] -> tau This seems curious at first, because we usually only have dictionary args whose types are of the form (C a) where a is a type variable. But this doesn't hold for the functions arising from instance decls, which sometimes get arguments with types of form (C (T a)) for some type constructor T. Should we specialise wrt this compound-type dictionary? We used to say "no", saying: "This is a heuristic judgement, as indeed is the fact that we specialise wrt only dictionaries. We choose *not* to specialise wrt compound dictionaries because at the moment the only place they show up is in instance decls, where they are simply plugged into a returned dictionary. So nothing is gained by specialising wrt them." But it is simpler and more uniform to specialise wrt these dicts too; and in future GHC is likely to support full fledged type signatures like f :: Eq [(a,b)] => ... Note [Specialisation and overlapping instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here is at tricky case (see a comment in MR !8916): module A where class C a where meth :: a -> String instance {-# OVERLAPPABLE #-} C (Maybe a) where meth _ = "Maybe" {-# SPECIALISE f :: Maybe a -> Bool -> String #-} f :: C a => a -> Bool -> String f a True = f a False f a _ = meth a module B where import A instance C (Maybe Int) where meth _ = "Int" main = putStrLn $ f (Just 42 :: Maybe Int) True Running main without optimisations yields "Int", the correct answer. Activating optimisations yields "Maybe" due to a rewrite rule in module A generated by the SPECIALISE pragma: RULE "USPEC f" forall a (d :: C a). f @a d = $sf In B we get the call (f @(Maybe Int) (d :: C (Maybe Int))), and that rewrites to $sf, but that isn't really right. Overlapping instances mean that `C (Maybe Int)` is not a singleton type: there two distinct dictionaries that have this type. And that spells trouble for specialistion, which really asssumes singleton types. For now, we just accept this problem, but it may bite us one day. One solution would be to decline to expose any specialisation rules to an importing module -- but that seems a bit drastic. ************************************************************************ * * \subsubsection{The new specialiser} * * ************************************************************************ Our basic game plan is this. For let(rec) bound function f :: (C a, D c) => (a,b,c,d) -> Bool * Find any specialised calls of f, (f ts ds), where ts are the type arguments t1 .. t4, and ds are the dictionary arguments d1 .. d2. * Add a new definition for f1 (say): f1 = /\ b d -> (..body of f..) t1 b t3 d d1 d2 Note that we abstract over the unconstrained type arguments. * Add the mapping [t1,b,t3,d] |-> \d1 d2 -> f1 b d to the specialisations of f. This will be used by the simplifier to replace calls (f t1 t2 t3 t4) da db by (\d1 d1 -> f1 t2 t4) da db All the stuff about how many dictionaries to discard, and what types to apply the specialised function to, are handled by the fact that the SpecEnv contains a template for the result of the specialisation. We don't build *partial* specialisations for f. For example: f :: Eq a => a -> a -> Bool {-# SPECIALISE f :: (Eq b, Eq c) => (b,c) -> (b,c) -> Bool #-} Here, little is gained by making a specialised copy of f. There's a distinct danger that the specialised version would first build a dictionary for (Eq b, Eq c), and then select the (==) method from it! Even if it didn't, not a great deal is saved. We do, however, generate polymorphic, but not overloaded, specialisations: f :: Eq a => [a] -> b -> b -> b ... SPECIALISE f :: [Int] -> b -> b -> b ... Hence, the invariant is this: *** no specialised version is overloaded *** ************************************************************************ * * \subsubsection{The exported function} * * ************************************************************************ -} -- | Specialise calls to type-class overloaded functions occurring in a program. specProgram :: ModGuts -> CoreM ModGuts specProgram :: ModGuts -> CoreM ModGuts specProgram guts :: ModGuts guts@(ModGuts { mg_module :: ModGuts -> Module mg_module = Module this_mod , mg_rules :: ModGuts -> [CoreRule] mg_rules = [CoreRule] local_rules , mg_binds :: ModGuts -> CoreProgram mg_binds = CoreProgram binds }) = do { dflags <- CoreM DynFlags forall (m :: * -> *). HasDynFlags m => m DynFlags getDynFlags ; rule_env <- initRuleEnv guts -- See Note [Fire rules in the specialiser] -- We need to start with a Subst that knows all the things -- that are in scope, so that the substitution engine doesn't -- accidentally re-use a unique that's already in use -- Easiest thing is to do it all at once, as if all the top-level -- decls were mutually recursive ; let top_env = SE { se_subst :: Subst se_subst = InScopeSet -> Subst Core.mkEmptySubst (InScopeSet -> Subst) -> InScopeSet -> Subst forall a b. (a -> b) -> a -> b $ CoreProgram -> InScopeSet mkInScopeSetBndrs CoreProgram binds -- mkInScopeSetList $ -- bindersOfBinds binds , se_module :: Module se_module = Module this_mod , se_rules :: RuleEnv se_rules = RuleEnv rule_env , se_dflags :: DynFlags se_dflags = DynFlags dflags } go [] = (CoreProgram, UsageDetails) -> SpecM (CoreProgram, UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return ([], UsageDetails emptyUDs) go (InBind bind:CoreProgram binds) = do (bind', binds', uds') <- TopLevelFlag -> SpecEnv -> InBind -> (SpecEnv -> SpecM (CoreProgram, UsageDetails)) -> SpecM (CoreProgram, CoreProgram, UsageDetails) forall body. TopLevelFlag -> SpecEnv -> InBind -> (SpecEnv -> SpecM (body, UsageDetails)) -> SpecM (CoreProgram, body, UsageDetails) specBind TopLevelFlag TopLevel SpecEnv top_env InBind bind ((SpecEnv -> SpecM (CoreProgram, UsageDetails)) -> SpecM (CoreProgram, CoreProgram, UsageDetails)) -> (SpecEnv -> SpecM (CoreProgram, UsageDetails)) -> SpecM (CoreProgram, CoreProgram, UsageDetails) forall a b. (a -> b) -> a -> b $ \SpecEnv _ -> CoreProgram -> SpecM (CoreProgram, UsageDetails) go CoreProgram binds return (bind' ++ binds', uds') -- Specialise the bindings of this module ; (binds', uds) <- runSpecM (go binds) ; (spec_rules, spec_binds) <- specImports top_env uds ; return (guts { mg_binds = spec_binds ++ binds' , mg_rules = spec_rules ++ local_rules }) } {- Note [Wrap bindings returned by specImports] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 'specImports' returns a set of specialized bindings. However, these are lacking necessary floated dictionary bindings, which are returned by UsageDetails(ud_binds). These dictionaries need to be brought into scope with 'wrapDictBinds' before the bindings returned by 'specImports' can be used. See, for instance, the 'specImports' call in 'specProgram'. Note [Disabling cross-module specialisation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Since GHC 7.10 we have performed specialisation of INLINABLE bindings living in modules outside of the current module. This can sometimes uncover user code which explodes in size when aggressively optimized. The -fno-cross-module-specialise option was introduced to allow users to being bitten by such instances to revert to the pre-7.10 behavior. See #10491 -} {- ********************************************************************* * * Specialising imported functions * * ********************************************************************* -} {- Note [Specialising imported functions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ specImports specialises imported functions, based on calls in this module. When -fspecialise-aggressively is on, we specialise any imported function for which we have an unfolding. The -fspecialise-aggressively flag is usually off, because we risk lots of orphan modules from over-vigorous specialisation. (See Note [Orphans] in GHC.Core.) However it's not a big deal: anything non-recursive with an unfolding-template will probably have been inlined already. When -fspecialise-aggressively is off, we are more selective about specialisation (see canSpecImport): (1) Without -fspecialise-aggressively, do not specialise DFunUnfoldings. Note [Do not specialise imported DFuns]. (2) Without -fspecialise-aggressively, specialise only imported things that have a /user-supplied/ INLINE or INLINABLE pragma (hence isAnyInlinePragma rather than isStableSource). In particular, we don't want to specialise workers created by worker/wrapper (for functions with no pragma) because they won't specialise usefully, and they generate quite a bit of useless code bloat. Specialise even INLINE things; it hasn't inlined yet, so perhaps it never will. Moreover it may have calls inside it that we want to specialise Wrinkle (W1): If we specialise an imported Id M.foo, we make a /local/ binding $sfoo. But specImports may further specialise $sfoo. So we end up with RULES for both M.foo (imported) and $sfoo (local). Rules for local Ids should be attached to the Ids themselves (see GHC.HsToCore Note [Attach rules to local ids]); so we must partition the rules and attach the local rules. That is done in specImports, via addRulesToId. Note [Glom the bindings if imported functions are specialised] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we have an imported, *recursive*, INLINABLE function f :: Eq a => a -> a f = /\a \d x. ...(f a d)... In the module being compiled we have g x = f (x::Int) Now we'll make a specialised function f_spec :: Int -> Int f_spec = \x -> ...(f Int dInt)... {-# RULE f Int _ = f_spec #-} g = \x. f Int dInt x Note that f_spec doesn't look recursive After rewriting with the RULE, we get f_spec = \x -> ...(f_spec)... BUT since f_spec was non-recursive before it'll *stay* non-recursive. The occurrence analyser never turns a NonRec into a Rec. So we must make sure that f_spec is recursive. Easiest thing is to make all the specialisations for imported bindings recursive. -} specImports :: SpecEnv -> UsageDetails -> CoreM ([CoreRule], [CoreBind]) specImports :: SpecEnv -> UsageDetails -> CoreM ([CoreRule], CoreProgram) specImports SpecEnv top_env (MkUD { ud_binds :: UsageDetails -> FloatedDictBinds ud_binds = FloatedDictBinds dict_binds, ud_calls :: UsageDetails -> CallDetails ud_calls = CallDetails calls }) | Bool -> Bool not (Bool -> Bool) -> Bool -> Bool forall a b. (a -> b) -> a -> b $ GeneralFlag -> DynFlags -> Bool gopt GeneralFlag Opt_CrossModuleSpecialise (SpecEnv -> DynFlags se_dflags SpecEnv top_env) -- See Note [Disabling cross-module specialisation] = ([CoreRule], CoreProgram) -> CoreM ([CoreRule], CoreProgram) forall a. a -> CoreM a forall (m :: * -> *) a. Monad m => a -> m a return ([], FloatedDictBinds -> CoreProgram -> CoreProgram wrapDictBinds FloatedDictBinds dict_binds []) | Bool otherwise = do { let env_w_dict_bndrs :: SpecEnv env_w_dict_bndrs = SpecEnv top_env SpecEnv -> FloatedDictBinds -> SpecEnv `bringFloatedDictsIntoScope` FloatedDictBinds dict_binds ; (_env, spec_rules, spec_binds) <- SpecEnv -> [Id] -> FloatedDictBinds -> CallDetails -> CoreM (SpecEnv, [CoreRule], CoreProgram) spec_imports SpecEnv env_w_dict_bndrs [] FloatedDictBinds dict_binds CallDetails calls -- Make a Rec: see Note [Glom the bindings if imported functions are specialised] -- -- wrapDictBinds: don't forget to wrap the specialized bindings with -- bindings for the needed dictionaries. -- See Note [Wrap bindings returned by specImports] -- -- addRulesToId: see Wrinkle (W1) in Note [Specialising imported functions] -- c.f. GHC.HsToCore.addExportFlagsAndRules ; let (rules_for_locals, rules_for_imps) = partition isLocalRule spec_rules local_rule_base = RuleBase -> [CoreRule] -> RuleBase extendRuleBaseList RuleBase emptyRuleBase [CoreRule] rules_for_locals final_binds | CoreProgram -> Bool forall a. [a] -> Bool forall (t :: * -> *) a. Foldable t => t a -> Bool null CoreProgram spec_binds = FloatedDictBinds -> CoreProgram -> CoreProgram wrapDictBinds FloatedDictBinds dict_binds [] | Bool otherwise = [[(Id, OutExpr)] -> InBind forall b. [(b, Expr b)] -> Bind b Rec ([(Id, OutExpr)] -> InBind) -> [(Id, OutExpr)] -> InBind forall a b. (a -> b) -> a -> b $ (Id -> Id) -> [(Id, OutExpr)] -> [(Id, OutExpr)] forall (f :: * -> *) a c b. Functor f => (a -> c) -> f (a, b) -> f (c, b) mapFst (RuleBase -> Id -> Id addRulesToId RuleBase local_rule_base) ([(Id, OutExpr)] -> [(Id, OutExpr)]) -> [(Id, OutExpr)] -> [(Id, OutExpr)] forall a b. (a -> b) -> a -> b $ CoreProgram -> [(Id, OutExpr)] forall b. [Bind b] -> [(b, Expr b)] flattenBinds (CoreProgram -> [(Id, OutExpr)]) -> CoreProgram -> [(Id, OutExpr)] forall a b. (a -> b) -> a -> b $ FloatedDictBinds -> CoreProgram -> CoreProgram wrapDictBinds FloatedDictBinds dict_binds (CoreProgram -> CoreProgram) -> CoreProgram -> CoreProgram forall a b. (a -> b) -> a -> b $ CoreProgram spec_binds] ; return (rules_for_imps, final_binds) } -- | Specialise a set of calls to imported bindings spec_imports :: SpecEnv -- Passed in so that all top-level Ids are in scope ---In-scope set includes the FloatedDictBinds -> [Id] -- Stack of imported functions being specialised -- See Note [specImport call stack] -> FloatedDictBinds -- Dict bindings, used /only/ for filterCalls -- See Note [Avoiding loops in specImports] -> CallDetails -- Calls for imported things -> CoreM ( SpecEnv -- Env contains the new rules , [CoreRule] -- New rules , [CoreBind] ) -- Specialised bindings spec_imports :: SpecEnv -> [Id] -> FloatedDictBinds -> CallDetails -> CoreM (SpecEnv, [CoreRule], CoreProgram) spec_imports SpecEnv env [Id] callers FloatedDictBinds dict_binds CallDetails calls = do { let import_calls :: [CallInfoSet] import_calls = CallDetails -> [CallInfoSet] forall a. DVarEnv a -> [a] dVarEnvElts CallDetails calls -- ; debugTraceMsg (text "specImports {" <+> -- vcat [ text "calls:" <+> ppr import_calls -- , text "dict_binds:" <+> ppr dict_binds ]) ; (env, rules, spec_binds) <- SpecEnv -> [CallInfoSet] -> CoreM (SpecEnv, [CoreRule], CoreProgram) go SpecEnv env [CallInfoSet] import_calls -- ; debugTraceMsg (text "End specImports }" <+> ppr import_calls) ; return (env, rules, spec_binds) } where go :: SpecEnv -> [CallInfoSet] -> CoreM (SpecEnv, [CoreRule], [CoreBind]) go :: SpecEnv -> [CallInfoSet] -> CoreM (SpecEnv, [CoreRule], CoreProgram) go SpecEnv env [] = (SpecEnv, [CoreRule], CoreProgram) -> CoreM (SpecEnv, [CoreRule], CoreProgram) forall a. a -> CoreM a forall (m :: * -> *) a. Monad m => a -> m a return (SpecEnv env, [], []) go SpecEnv env (CallInfoSet cis : [CallInfoSet] other_calls) = do { -- debugTraceMsg (text "specImport {" <+> ppr cis) ; (env, rules1, spec_binds1) <- SpecEnv -> [Id] -> FloatedDictBinds -> CallInfoSet -> CoreM (SpecEnv, [CoreRule], CoreProgram) spec_import SpecEnv env [Id] callers FloatedDictBinds dict_binds CallInfoSet cis ; -- debugTraceMsg (text "specImport }" <+> ppr cis) ; (env, rules2, spec_binds2) <- go env other_calls ; return (env, rules1 ++ rules2, spec_binds1 ++ spec_binds2) } spec_import :: SpecEnv -- Passed in so that all top-level Ids are in scope ---In-scope set includes the FloatedDictBinds -> [Id] -- Stack of imported functions being specialised -- See Note [specImport call stack] -> FloatedDictBinds -- Dict bindings, used /only/ for filterCalls -- See Note [Avoiding loops in specImports] -> CallInfoSet -- Imported function and calls for it -> CoreM ( SpecEnv , [CoreRule] -- New rules , [CoreBind] ) -- Specialised bindings spec_import :: SpecEnv -> [Id] -> FloatedDictBinds -> CallInfoSet -> CoreM (SpecEnv, [CoreRule], CoreProgram) spec_import SpecEnv env [Id] callers FloatedDictBinds dict_binds cis :: CallInfoSet cis@(CIS Id fn Bag CallInfo _) | String -> Id -> [Id] -> Bool forall a. Eq a => String -> a -> [a] -> Bool isIn String "specImport" Id fn [Id] callers = (SpecEnv, [CoreRule], CoreProgram) -> CoreM (SpecEnv, [CoreRule], CoreProgram) forall a. a -> CoreM a forall (m :: * -> *) a. Monad m => a -> m a return (SpecEnv env, [], []) -- No warning. This actually happens all the time -- when specialising a recursive function, because -- the RHS of the specialised function contains a recursive -- call to the original function | [CallInfo] -> Bool forall a. [a] -> Bool forall (t :: * -> *) a. Foldable t => t a -> Bool null [CallInfo] good_calls = (SpecEnv, [CoreRule], CoreProgram) -> CoreM (SpecEnv, [CoreRule], CoreProgram) forall a. a -> CoreM a forall (m :: * -> *) a. Monad m => a -> m a return (SpecEnv env, [], []) | Just OutExpr rhs <- DynFlags -> Id -> Maybe OutExpr canSpecImport DynFlags dflags Id fn = do { -- Get rules from the external package state -- We keep doing this in case we "page-fault in" -- more rules as we go along ; eps_rules <- CoreM RuleBase getExternalRuleBase ; let rule_env = SpecEnv -> RuleEnv se_rules SpecEnv env RuleEnv -> RuleBase -> RuleEnv `updExternalPackageRules` RuleBase eps_rules -- ; debugTraceMsg (text "specImport1" <+> vcat -- [ text "function:" <+> ppr fn -- , text "good calls:" <+> ppr good_calls -- , text "existing rules:" <+> ppr (getRules rule_env fn) -- , text "rhs:" <+> ppr rhs -- , text "dict_binds:" <+> ppr dict_binds ]) ; (rules1, spec_pairs, MkUD { ud_binds = dict_binds1, ud_calls = new_calls }) <- runSpecM $ specCalls True env (getRules rule_env fn) good_calls fn rhs ; let spec_binds1 = [Id -> OutExpr -> InBind forall b. b -> Expr b -> Bind b NonRec Id b OutExpr r | (Id b,OutExpr r) <- [(Id, OutExpr)] spec_pairs] -- After the rules kick in, via fireRewriteRules, we may get recursion, -- but we rely on a global GlomBinds to sort that out later -- See Note [Glom the bindings if imported functions are specialised] -- Meanwhile, though, bring the binders into scope new_subst = SpecEnv -> Subst se_subst SpecEnv env Subst -> [Id] -> Subst `Core.extendSubstInScopeList` ((Id, OutExpr) -> Id) -> [(Id, OutExpr)] -> [Id] forall a b. (a -> b) -> [a] -> [b] map (Id, OutExpr) -> Id forall a b. (a, b) -> a fst [(Id, OutExpr)] spec_pairs new_env = SpecEnv env { se_rules = rule_env `addLocalRules` rules1 , se_subst = new_subst } SpecEnv -> FloatedDictBinds -> SpecEnv `bringFloatedDictsIntoScope` FloatedDictBinds dict_binds1 -- Now specialise any cascaded calls -- ; debugTraceMsg (text "specImport 2" <+> vcat -- [ text "function:" <+> ppr fn -- , text "rules1:" <+> ppr rules1 -- , text "spec_binds1" <+> ppr spec_binds1 -- , text "dict_binds1" <+> ppr dict_binds1 -- , text "new_calls" <+> ppr new_calls ]) ; (env, rules2, spec_binds2) <- spec_imports new_env (fn:callers) (dict_binds `thenFDBs` dict_binds1) new_calls ; let final_binds = FloatedDictBinds -> CoreProgram -> CoreProgram wrapDictBinds FloatedDictBinds dict_binds1 (CoreProgram -> CoreProgram) -> CoreProgram -> CoreProgram forall a b. (a -> b) -> a -> b $ CoreProgram spec_binds2 CoreProgram -> CoreProgram -> CoreProgram forall a. [a] -> [a] -> [a] ++ CoreProgram spec_binds1 ; return (env, rules2 ++ rules1, final_binds) } | Bool otherwise = do { DynFlags -> [Id] -> Id -> [CallInfo] -> CoreM () tryWarnMissingSpecs DynFlags dflags [Id] callers Id fn [CallInfo] good_calls ; (SpecEnv, [CoreRule], CoreProgram) -> CoreM (SpecEnv, [CoreRule], CoreProgram) forall a. a -> CoreM a forall (m :: * -> *) a. Monad m => a -> m a return (SpecEnv env, [], [])} where dflags :: DynFlags dflags = SpecEnv -> DynFlags se_dflags SpecEnv env good_calls :: [CallInfo] good_calls = CallInfoSet -> FloatedDictBinds -> [CallInfo] filterCalls CallInfoSet cis FloatedDictBinds dict_binds -- SUPER IMPORTANT! Drop calls that (directly or indirectly) refer to fn -- See Note [Avoiding loops in specImports] canSpecImport :: DynFlags -> Id -> Maybe CoreExpr canSpecImport :: DynFlags -> Id -> Maybe OutExpr canSpecImport DynFlags dflags Id fn | Id -> Bool isDataConWrapId Id fn = Maybe OutExpr forall a. Maybe a Nothing -- Don't specialise data-con wrappers, even if they -- have dict args; there is no benefit. | CoreUnfolding { uf_tmpl :: Unfolding -> OutExpr uf_tmpl = OutExpr rhs } <- Unfolding unf -- CoreUnfolding: see Note [Specialising imported functions] point (1). , InlinePragma -> Bool isAnyInlinePragma (Id -> InlinePragma idInlinePragma Id fn) -- See Note [Specialising imported functions] point (2). = OutExpr -> Maybe OutExpr forall a. a -> Maybe a Just OutExpr rhs | GeneralFlag -> DynFlags -> Bool gopt GeneralFlag Opt_SpecialiseAggressively DynFlags dflags = Unfolding -> Maybe OutExpr maybeUnfoldingTemplate Unfolding unf -- With -fspecialise-aggressively, specialise anything -- with an unfolding, stable or not, DFun or not | Bool otherwise = Maybe OutExpr forall a. Maybe a Nothing where unf :: Unfolding unf = Id -> Unfolding realIdUnfolding Id fn -- We want to see the unfolding even for loop breakers -- | Returns whether or not to show a missed-spec warning. -- If -Wall-missed-specializations is on, show the warning. -- Otherwise, if -Wmissed-specializations is on, only show a warning -- if there is at least one imported function being specialized, -- and if all imported functions are marked with an inline pragma -- Use the most specific warning as the reason. tryWarnMissingSpecs :: DynFlags -> [Id] -> Id -> [CallInfo] -> CoreM () -- See Note [Warning about missed specialisations] tryWarnMissingSpecs :: DynFlags -> [Id] -> Id -> [CallInfo] -> CoreM () tryWarnMissingSpecs DynFlags dflags [Id] callers Id fn [CallInfo] calls_for_fn | Id -> Bool isClassOpId Id fn = () -> CoreM () forall a. a -> CoreM a forall (m :: * -> *) a. Monad m => a -> m a return () -- See Note [Missed specialisation for ClassOps] | WarningFlag -> DynFlags -> Bool wopt WarningFlag Opt_WarnMissedSpecs DynFlags dflags Bool -> Bool -> Bool && Bool -> Bool not ([Id] -> Bool forall a. [a] -> Bool forall (t :: * -> *) a. Foldable t => t a -> Bool null [Id] callers) Bool -> Bool -> Bool && Bool allCallersInlined = DiagnosticReason -> CoreM () doWarn (DiagnosticReason -> CoreM ()) -> DiagnosticReason -> CoreM () forall a b. (a -> b) -> a -> b $ WarningFlag -> DiagnosticReason WarningWithFlag WarningFlag Opt_WarnMissedSpecs | WarningFlag -> DynFlags -> Bool wopt WarningFlag Opt_WarnAllMissedSpecs DynFlags dflags = DiagnosticReason -> CoreM () doWarn (DiagnosticReason -> CoreM ()) -> DiagnosticReason -> CoreM () forall a b. (a -> b) -> a -> b $ WarningFlag -> DiagnosticReason WarningWithFlag WarningFlag Opt_WarnAllMissedSpecs | Bool otherwise = () -> CoreM () forall a. a -> CoreM a forall (m :: * -> *) a. Monad m => a -> m a return () where allCallersInlined :: Bool allCallersInlined = (Id -> Bool) -> [Id] -> Bool forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool all (InlinePragma -> Bool isAnyInlinePragma (InlinePragma -> Bool) -> (Id -> InlinePragma) -> Id -> Bool forall b c a. (b -> c) -> (a -> b) -> a -> c . Id -> InlinePragma idInlinePragma) [Id] callers diag_opts :: DiagOpts diag_opts = DynFlags -> DiagOpts initDiagOpts DynFlags dflags doWarn :: DiagnosticReason -> CoreM () doWarn DiagnosticReason reason = MessageClass -> SDoc -> CoreM () msg (DiagOpts -> DiagnosticReason -> Maybe DiagnosticCode -> MessageClass mkMCDiagnostic DiagOpts diag_opts DiagnosticReason reason Maybe DiagnosticCode forall a. Maybe a Nothing) ([SDoc] -> SDoc forall doc. IsDoc doc => [doc] -> doc vcat [ SDoc -> Int -> SDoc -> SDoc hang (String -> SDoc forall doc. IsLine doc => String -> doc text (String "Could not specialise imported function") SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc -> SDoc quotes (Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id fn)) Int 2 ([SDoc] -> SDoc forall doc. IsDoc doc => [doc] -> doc vcat [ String -> SDoc forall doc. IsLine doc => String -> doc text String "when specialising" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc -> SDoc quotes (Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id caller) | Id caller <- [Id] callers]) , SDoc -> SDoc forall doc. IsOutput doc => doc -> doc whenPprDebug (String -> SDoc forall doc. IsLine doc => String -> doc text String "calls:" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> [SDoc] -> SDoc forall doc. IsDoc doc => [doc] -> doc vcat ((CallInfo -> SDoc) -> [CallInfo] -> [SDoc] forall a b. (a -> b) -> [a] -> [b] map (Id -> CallInfo -> SDoc pprCallInfo Id fn) [CallInfo] calls_for_fn)) , String -> SDoc forall doc. IsLine doc => String -> doc text String "Probable fix: add INLINABLE pragma on" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc -> SDoc quotes (Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id fn) ]) {- Note [Missed specialisation for ClassOps] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In #19592 I saw a number of missed specialisation warnings which were the result of things like: case isJumpishInstr @X86.Instr $dInstruction_s7f8 eta3_a78C of { ... where isJumpishInstr is part of the Instruction class and defined like this: class Instruction instr where ... isJumpishInstr :: instr -> Bool ... isJumpishInstr is a ClassOp which will select the right method from within the dictionary via our built in rules. See also Note [ClassOp/DFun selection] in GHC.Tc.TyCl.Instance. We don't give these unfoldings, and as a result the specialiser complains. But usually this doesn't matter. The simplifier will apply the rule and we end up with case isJumpishInstrImplX86 eta3_a78C of { ... Since isJumpishInstrImplX86 is defined for a concrete instance (given by the dictionary) it is usually already well specialised! Theoretically the implementation of a method could still be overloaded over a different type class than what it's a method of. But I wasn't able to make this go wrong, and SPJ thinks this should be fine as well. So I decided to remove the warnings for failed specialisations on ClassOps alltogether as they do more harm than good. -} {- Note [Do not specialise imported DFuns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ticket #18223 shows that specialising calls of DFuns is can cause a huge and entirely unnecessary blowup in program size. Consider a call to f @[[[[[[[[T]]]]]]]] d1 x where df :: C a => C [a] d1 :: C [[[[[[[[T]]]]]]]] = dfC[] @[[[[[[[T]]]]]]] d1 d2 :: C [[[[[[[T]]]]]]] = dfC[] @[[[[[[T]]]]]] d3 ... Now we'll specialise f's RHS, which may give rise to calls to 'g', also overloaded, which we will specialise, and so on. However, if we specialise the calls to dfC[], we'll generate specialised copies of all methods of C, at all types; and the same for C's superclasses. And many of these specialised functions will never be called. We are going to call the specialised 'f', and the specialised 'g', but DFuns group functions into a tuple, many of whose elements may never be used. With deeply-nested types this can lead to a simply overwhelming number of specialisations: see #18223 for a simple example (from the wild). I measured the number of specialisations for various numbers of calls of `flip evalStateT ()`, and got this Size after one simplification #calls #SPEC rules Terms Types 5 56 3100 10600 9 108 13660 77206 The real tests case has 60+ calls, which blew GHC out of the water. Solution: don't specialise DFuns. The downside is that if we end up with (h (dfun d)), /and/ we don't specialise 'h', then we won't pass to 'h' a tuple of specialised functions. However, the flag -fspecialise-aggressively (experimental, off by default) allows DFuns to specialise as well. Note [Avoiding loops in specImports] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We must take great care when specialising instance declarations (DFuns like $fOrdList) lest we accidentally build a recursive dictionary. See Note [Avoiding loops (DFuns)]. The basic strategy of Note [Avoiding loops (DFuns)] is to use filterCalls to discard loopy specialisations. But to do that we must ensure that the in-scope dict-binds (passed to filterCalls) contains all the needed dictionary bindings. In particular, in the recursive call to spec_imports in spec_import, we must include the dict-binds from the parent. Lacking this caused #17151, a really nasty bug. Here is what happened. * Class structure: Source is a superclass of Mut Index is a superclass of Source * We started with these dict binds dSource = $fSourcePix @Int $fIndexInt dIndex = sc_sel dSource dMut = $fMutPix @Int dIndex and these calls to specialise $fMutPix @Int dIndex $fSourcePix @Int $fIndexInt * We specialised the call ($fMutPix @Int dIndex) ==> new call ($fSourcePix @Int dIndex) (because Source is a superclass of Mut) * We specialised ($fSourcePix @Int dIndex) ==> produces specialised dict $s$fSourcePix, a record with dIndex as a field plus RULE forall d. ($fSourcePix @Int d) = $s$fSourcePix *** This is the bogus step *** * Now we decide not to specialise the call $fSourcePix @Int $fIndexInt because we alredy have a RULE that matches it * Finally the simplifer rewrites dSource = $fSourcePix @Int $fIndexInt ==> dSource = $s$fSourcePix Disaster. Now we have Rewrite dSource's RHS to $s$fSourcePix Disaster dSource = $s$fSourcePix dIndex = sc_sel dSource $s$fSourcePix = MkSource dIndex ... Solution: filterCalls should have stopped the bogus step, by seeing that dIndex transitively uses $fSourcePix. But it can only do that if it sees all the dict_binds. Wow. -------------- Here's another example (#13429). Suppose we have class Monoid v => C v a where ... We start with a call f @ [Integer] @ Integer $fC[]Integer Specialising call to 'f' gives dict bindings $dMonoid_1 :: Monoid [Integer] $dMonoid_1 = M.$p1C @ [Integer] $fC[]Integer $dC_1 :: C [Integer] (Node [Integer] Integer) $dC_1 = M.$fCvNode @ [Integer] $dMonoid_1 ...plus a recursive call to f @ [Integer] @ (Node [Integer] Integer) $dC_1 Specialising that call gives $dMonoid_2 :: Monoid [Integer] $dMonoid_2 = M.$p1C @ [Integer] $dC_1 $dC_2 :: C [Integer] (Node [Integer] Integer) $dC_2 = M.$fCvNode @ [Integer] $dMonoid_2 Now we have two calls to the imported function M.$fCvNode :: Monoid v => C v a M.$fCvNode @v @a m = C m some_fun But we must /not/ use the call (M.$fCvNode @ [Integer] $dMonoid_2) for specialisation, else we get: $dC_1 = M.$fCvNode @ [Integer] $dMonoid_1 $dMonoid_2 = M.$p1C @ [Integer] $dC_1 $s$fCvNode = C $dMonoid_2 ... RULE M.$fCvNode [Integer] _ _ = $s$fCvNode Now use the rule to rewrite the call in the RHS of $dC_1 and we get a loop! Note [specImport call stack] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When specialising an imports function 'f', we may get new calls of an imported function 'g', which we want to specialise in turn, and similarly specialising 'g' might expose a new call to 'h'. We track the stack of enclosing functions. So when specialising 'h' we have a specImport call stack of [g,f]. We do this for two reasons: * Note [Warning about missed specialisations] * Note [Avoiding recursive specialisation] Note [Warning about missed specialisations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose * In module Lib, you carefully mark a function 'foo' INLINABLE * Import Lib(foo) into another module M * Call 'foo' at some specialised type in M Then you jolly well expect it to be specialised in M. But what if 'foo' calls another function 'Lib.bar'. Then you'd like 'bar' to be specialised too. But if 'bar' is not marked INLINABLE it may well not be specialised. The warning Opt_WarnMissedSpecs warns about this. It's more noisy to warning about a missed specialisation opportunity for /every/ overloaded imported function, but sometimes useful. That is what Opt_WarnAllMissedSpecs does. ToDo: warn about missed opportunities for local functions. Note [Avoiding recursive specialisation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we specialise 'f' we may find new overloaded calls to 'g', 'h' in 'f's RHS. So we want to specialise g,h. But we don't want to specialise f any more! It's possible that f's RHS might have a recursive yet-more-specialised call, so we'd diverge in that case. And if the call is to the same type, one specialisation is enough. Avoiding this recursive specialisation loop is one reason for the 'callers' stack passed to specImports and specImport. ************************************************************************ * * \subsubsection{@specExpr@: the main function} * * ************************************************************************ -} data SpecEnv = SE { SpecEnv -> Subst se_subst :: Core.Subst -- We carry a substitution down: -- a) we must clone any binding that might float outwards, -- to avoid name clashes -- b) we carry a type substitution to use when analysing -- the RHS of specialised bindings (no type-let!) , SpecEnv -> Module se_module :: Module , SpecEnv -> RuleEnv se_rules :: RuleEnv -- From the home package and this module , SpecEnv -> DynFlags se_dflags :: DynFlags } instance Outputable SpecEnv where ppr :: SpecEnv -> SDoc ppr (SE { se_subst :: SpecEnv -> Subst se_subst = Subst subst }) = String -> SDoc forall doc. IsLine doc => String -> doc text String "SE" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc -> SDoc forall doc. IsLine doc => doc -> doc braces (String -> SDoc forall doc. IsLine doc => String -> doc text String "subst =" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> Subst -> SDoc forall a. Outputable a => a -> SDoc ppr Subst subst) specVar :: SpecEnv -> InId -> SpecM (OutExpr, UsageDetails) specVar :: SpecEnv -> Id -> SpecM (OutExpr, UsageDetails) specVar env :: SpecEnv env@(SE { se_subst :: SpecEnv -> Subst se_subst = Core.Subst InScopeSet in_scope IdSubstEnv ids TvSubstEnv _ CvSubstEnv _ }) Id v | Bool -> Bool not (Id -> Bool isLocalId Id v) = (OutExpr, UsageDetails) -> SpecM (OutExpr, UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return (Id -> OutExpr forall b. Id -> Expr b Var Id v, UsageDetails emptyUDs) | Just OutExpr e <- IdSubstEnv -> Id -> Maybe OutExpr forall a. VarEnv a -> Id -> Maybe a lookupVarEnv IdSubstEnv ids Id v = SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr (SpecEnv -> SpecEnv zapSubst SpecEnv env) OutExpr e -- Note (1) | Just Id v' <- InScopeSet -> Id -> Maybe Id lookupInScope InScopeSet in_scope Id v = (OutExpr, UsageDetails) -> SpecM (OutExpr, UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return (Id -> OutExpr forall b. Id -> Expr b Var Id v', UsageDetails emptyUDs) | Bool otherwise = String -> SDoc -> SpecM (OutExpr, UsageDetails) forall a. HasCallStack => String -> SDoc -> a pprPanic String "specVar" (Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id v SDoc -> SDoc -> SDoc forall doc. IsDoc doc => doc -> doc -> doc $$ InScopeSet -> SDoc forall a. Outputable a => a -> SDoc ppr InScopeSet in_scope) -- c.f. GHC.Core.Subst.lookupIdSubst -- Note (1): we recurse so we do the lookupInScope thing on any Vars in e -- probably has little effect, but it's the right thing. -- We need zapSubst because `e` is an OutExpr specExpr :: SpecEnv -> CoreExpr -> SpecM (CoreExpr, UsageDetails) ---------------- First the easy cases -------------------- specExpr :: SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env (Var Id v) = SpecEnv -> Id -> SpecM (OutExpr, UsageDetails) specVar SpecEnv env Id v specExpr SpecEnv env (Type Kind ty) = (OutExpr, UsageDetails) -> SpecM (OutExpr, UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return (Kind -> OutExpr forall b. Kind -> Expr b Type (SpecEnv -> Kind -> Kind substTy SpecEnv env Kind ty), UsageDetails emptyUDs) specExpr SpecEnv env (Coercion Coercion co) = (OutExpr, UsageDetails) -> SpecM (OutExpr, UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return (Coercion -> OutExpr forall b. Coercion -> Expr b Coercion (SpecEnv -> Coercion -> Coercion substCo SpecEnv env Coercion co), UsageDetails emptyUDs) specExpr SpecEnv _ (Lit Literal lit) = (OutExpr, UsageDetails) -> SpecM (OutExpr, UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return (Literal -> OutExpr forall b. Literal -> Expr b Lit Literal lit, UsageDetails emptyUDs) specExpr SpecEnv env (Cast OutExpr e Coercion co) = do { (e', uds) <- SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env OutExpr e ; return ((mkCast e' (substCo env co)), uds) } specExpr SpecEnv env (Tick CoreTickish tickish OutExpr body) = do { (body', uds) <- SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env OutExpr body ; return (Tick (specTickish env tickish) body', uds) } ---------------- Applications might generate a call instance -------------------- specExpr SpecEnv env expr :: OutExpr expr@(App {}) = do { let (OutExpr fun_in, [OutExpr] args_in) = OutExpr -> (OutExpr, [OutExpr]) forall b. Expr b -> (Expr b, [Expr b]) collectArgs OutExpr expr ; (args_out, uds_args) <- (OutExpr -> SpecM (OutExpr, UsageDetails)) -> [OutExpr] -> SpecM ([OutExpr], UsageDetails) forall a b. (a -> SpecM (b, UsageDetails)) -> [a] -> SpecM ([b], UsageDetails) mapAndCombineSM (SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env) [OutExpr] args_in ; let env_args = SpecEnv env SpecEnv -> FloatedDictBinds -> SpecEnv `bringFloatedDictsIntoScope` UsageDetails -> FloatedDictBinds ud_binds UsageDetails uds_args -- Some dicts may have floated out of args_in; -- they should be in scope for fireRewriteRules (#21689) (fun_in', args_out') = fireRewriteRules env_args fun_in args_out ; (fun_out', uds_fun) <- specExpr env fun_in' ; let uds_call = SpecEnv -> OutExpr -> [OutExpr] -> UsageDetails mkCallUDs SpecEnv env OutExpr fun_out' [OutExpr] args_out' ; return (fun_out' `mkApps` args_out', uds_fun `thenUDs` uds_call `thenUDs` uds_args) } ---------------- Lambda/case require dumping of usage details -------------------- specExpr SpecEnv env e :: OutExpr e@(Lam {}) = SpecEnv -> [Id] -> OutExpr -> SpecM (OutExpr, UsageDetails) specLam SpecEnv env' [Id] bndrs' OutExpr body where ([Id] bndrs, OutExpr body) = OutExpr -> ([Id], OutExpr) forall b. Expr b -> ([b], Expr b) collectBinders OutExpr e (SpecEnv env', [Id] bndrs') = SpecEnv -> [Id] -> (SpecEnv, [Id]) forall (f :: * -> *). Traversable f => SpecEnv -> f Id -> (SpecEnv, f Id) substBndrs SpecEnv env [Id] bndrs -- More efficient to collect a group of binders together all at once -- and we don't want to split a lambda group with dumped bindings specExpr SpecEnv env (Case OutExpr scrut Id case_bndr Kind ty [Alt Id] alts) = do { (scrut', scrut_uds) <- SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env OutExpr scrut ; (scrut'', case_bndr', alts', alts_uds) <- specCase env scrut' case_bndr alts -- ; pprTrace "specExpr:case" (vcat -- [ text "scrut" <+> ppr scrut, text "scrut'" <+> ppr scrut' -- , text "case_bndr'" <+> ppr case_bndr' -- , text "alts_uds" <+> ppr alts_uds -- ]) ; return (Case scrut'' case_bndr' (substTy env ty) alts' , scrut_uds `thenUDs` alts_uds) } ---------------- Finally, let is the interesting case -------------------- specExpr SpecEnv env (Let InBind bind OutExpr body) = do { (binds', body', uds) <- TopLevelFlag -> SpecEnv -> InBind -> (SpecEnv -> SpecM (OutExpr, UsageDetails)) -> SpecM (CoreProgram, OutExpr, UsageDetails) forall body. TopLevelFlag -> SpecEnv -> InBind -> (SpecEnv -> SpecM (body, UsageDetails)) -> SpecM (CoreProgram, body, UsageDetails) specBind TopLevelFlag NotTopLevel SpecEnv env InBind bind ((SpecEnv -> SpecM (OutExpr, UsageDetails)) -> SpecM (CoreProgram, OutExpr, UsageDetails)) -> (SpecEnv -> SpecM (OutExpr, UsageDetails)) -> SpecM (CoreProgram, OutExpr, UsageDetails) forall a b. (a -> b) -> a -> b $ \SpecEnv body_env -> -- pprTrace "specExpr:let" (ppr (se_subst body_env) $$ ppr body) $ SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv body_env OutExpr body -- All done ; return (foldr Let body' binds', uds) } -- See Note [Specialisation modulo dictionary selectors] -- Note [ClassOp/DFun selection] -- Note [Fire rules in the specialiser] fireRewriteRules :: SpecEnv -> InExpr -> [OutExpr] -> (InExpr, [OutExpr]) fireRewriteRules :: SpecEnv -> OutExpr -> [OutExpr] -> (OutExpr, [OutExpr]) fireRewriteRules SpecEnv env (Var Id f) [OutExpr] args | let rules :: [CoreRule] rules = RuleEnv -> Id -> [CoreRule] getRules (SpecEnv -> RuleEnv se_rules SpecEnv env) Id f , Just (CoreRule rule, OutExpr expr) <- SpecEnv -> Id -> [OutExpr] -> (Activation -> Bool) -> [CoreRule] -> Maybe (CoreRule, OutExpr) specLookupRule SpecEnv env Id f [OutExpr] args Activation -> Bool activeInInitialPhase [CoreRule] rules , let rest_args :: [OutExpr] rest_args = Int -> [OutExpr] -> [OutExpr] forall a. Int -> [a] -> [a] drop (CoreRule -> Int ruleArity CoreRule rule) [OutExpr] args -- See Note [Extra args in the target] zapped_subst :: Subst zapped_subst = Subst -> Subst Core.zapSubst (SpecEnv -> Subst se_subst SpecEnv env) expr' :: OutExpr expr' = HasDebugCallStack => SimpleOpts -> Subst -> OutExpr -> OutExpr SimpleOpts -> Subst -> OutExpr -> OutExpr simpleOptExprWith SimpleOpts defaultSimpleOpts Subst zapped_subst OutExpr expr -- simplOptExpr needed because lookupRule returns -- (\x y. rhs) arg1 arg2 , (OutExpr fun', [OutExpr] args') <- OutExpr -> (OutExpr, [OutExpr]) forall b. Expr b -> (Expr b, [Expr b]) collectArgs OutExpr expr' = SpecEnv -> OutExpr -> [OutExpr] -> (OutExpr, [OutExpr]) fireRewriteRules SpecEnv env OutExpr fun' ([OutExpr] args'[OutExpr] -> [OutExpr] -> [OutExpr] forall a. [a] -> [a] -> [a] ++[OutExpr] rest_args) fireRewriteRules SpecEnv _ OutExpr fun [OutExpr] args = (OutExpr fun, [OutExpr] args) -------------- specLam :: SpecEnv -> [OutBndr] -> InExpr -> SpecM (OutExpr, UsageDetails) -- The binders have been substituted, but the body has not specLam :: SpecEnv -> [Id] -> OutExpr -> SpecM (OutExpr, UsageDetails) specLam SpecEnv env [Id] bndrs OutExpr body | [Id] -> Bool forall a. [a] -> Bool forall (t :: * -> *) a. Foldable t => t a -> Bool null [Id] bndrs = SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env OutExpr body | Bool otherwise = do { (body', uds) <- SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env OutExpr body ; let (free_uds, dumped_dbs) = dumpUDs bndrs uds ; return (mkLams bndrs (wrapDictBindsE dumped_dbs body'), free_uds) } -------------- specTickish :: SpecEnv -> CoreTickish -> CoreTickish specTickish :: SpecEnv -> CoreTickish -> CoreTickish specTickish (SE { se_subst :: SpecEnv -> Subst se_subst = Subst subst }) CoreTickish bp = Subst -> CoreTickish -> CoreTickish substTickish Subst subst CoreTickish bp -------------- specCase :: SpecEnv -> OutExpr -- Scrutinee, already done -> InId -> [InAlt] -> SpecM ( OutExpr -- New scrutinee , OutId , [OutAlt] , UsageDetails) -- We used to float out super class selections here, -- but no longer do so. See Historical Note [Floating dictionaries out of cases] specCase :: SpecEnv -> OutExpr -> Id -> [Alt Id] -> SpecM (OutExpr, Id, [Alt Id], UsageDetails) specCase SpecEnv env OutExpr scrut Id case_bndr [Alt Id] alts = do { (alts', uds_alts) <- (Alt Id -> SpecM (Alt Id, UsageDetails)) -> [Alt Id] -> SpecM ([Alt Id], UsageDetails) forall a b. (a -> SpecM (b, UsageDetails)) -> [a] -> SpecM ([b], UsageDetails) mapAndCombineSM Alt Id -> SpecM (Alt Id, UsageDetails) spec_alt [Alt Id] alts ; return (scrut, case_bndr', alts', uds_alts) } where (SpecEnv env_alt, Id case_bndr') = SpecEnv -> Id -> (SpecEnv, Id) substBndr SpecEnv env Id case_bndr spec_alt :: Alt Id -> SpecM (Alt Id, UsageDetails) spec_alt (Alt AltCon con [Id] args OutExpr rhs) = do { (rhs', uds) <- SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env_rhs OutExpr rhs ; let (free_uds, dumped_dbs) = dumpUDs (case_bndr' : args') uds -- ; unless (isNilOL dumped_dbs) $ -- pprTrace "specAlt" (vcat -- [text "case_bndr', args" <+> (ppr case_bndr' $$ ppr args) -- ,text "dumped" <+> ppr dumped_dbs ]) return () ; return (Alt con args' (wrapDictBindsE dumped_dbs rhs'), free_uds) } where (SpecEnv env_rhs, [Id] args') = SpecEnv -> [Id] -> (SpecEnv, [Id]) forall (f :: * -> *). Traversable f => SpecEnv -> f Id -> (SpecEnv, f Id) substBndrs SpecEnv env_alt [Id] args {- Note [Fire rules in the specialiser] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this (#21851) module A where f :: Num b => b -> (b, b) f x = (x + 1, snd (f x)) {-# SPECIALIZE f :: Int -> (Int, Int) #-} module B (g') where import A g :: Num a => a -> a g x = fst (f x) {-# NOINLINE[99] g #-} h :: Int -> Int h = g Note that `f` has the CPR property, and so will worker/wrapper. The call to `g` in `h` will make us specialise `g @Int`. And the specialised version of `g` will contain the call `f @Int`; but in the subsequent run of the Simplifier, there will be a competition between: * The user-supplied SPECIALISE rule for `f` * The inlining of the wrapper for `f` In fact, the latter wins -- see Note [tryRules: plan (BEFORE)] GHC.Core.Opt.Simplify.Iteration. However, it a bit fragile. Moreover consider (test T21851_2): module A f :: (Ord a, Show b) => a -> b -> blah {-# RULE forall b. f @Int @b = wombat #-} wombat :: Show b => Int -> b -> blah wombat = blah module B import A g :: forall a. Ord a => blah g @a = ...g...f @a @Char.... h = ....g @Int.... Now, in module B, GHC will specialise `g @Int`, which will lead to a call `f @Int @Char`. If we immediately (in the specialiser) rewrite that to `womabat @Char`, we have a chance to specialise `wombat`. Conclusion: it's treat if the Specialiser fires RULEs itself. It's not hard to achieve: see `fireRewriteRules`. The only tricky bit is making sure that we have a reasonably up to date EPS rule base. Currently we load it up just once, in `initRuleEnv`, called at the beginning of `specProgram`. NB: you might wonder if running rules in the specialiser (this Note) renders Note [tryRules: plan (BEFORE)] in the Simplifier (partly) redundant. That is, if we run rules in the specialiser, does it matter if we make rules "win" over inlining in the Simplifier? Yes, it does! See the discussion in #21851. Historical Note [Floating dictionaries out of cases] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Function `specCase` used to give special treatment to a case-expression that scrutinised a dictionary, like this: g = \d. case d of { MkD sc ... -> ...(f sc)... } But actually * We never explicitly case-analyse a dictionary; rather the class-op rules select superclasses from it. (NB: worker/wrapper can unbox tuple dictionaries -- see (DNB1) in Note [Do not unbox class dictionaries]; but that's only after worker/wrapper, and specialisation happens before that.) * Calling `interestingDict` on every scrutinee is hardly sensible; generally `interestingDict` is called only on Constraint-kinded things. * It was giving a Lint scope error in !14272 So now there is no special case. This Note just records the change in case we ever want to reinstate it. The original note was added in commit c107a00ccf1e641a2d008939cf477c71caa028d5 Author: Simon Peyton Jones <simonpj@microsoft.com> Date: Thu Aug 12 13:11:33 2010 +0000 Improve the Specialiser, fixing Trac #4203 End of Historical Note ************************************************************************ * * Dealing with a binding * * ************************************************************************ -} bringFloatedDictsIntoScope :: SpecEnv -> FloatedDictBinds -> SpecEnv bringFloatedDictsIntoScope :: SpecEnv -> FloatedDictBinds -> SpecEnv bringFloatedDictsIntoScope SpecEnv env (FDB { fdb_bndrs :: FloatedDictBinds -> IdSet fdb_bndrs = IdSet dx_bndrs }) = -- pprTrace "brought into scope" (ppr dx_bndrs) $ SpecEnv env {se_subst=subst'} where subst' :: Subst subst' = SpecEnv -> Subst se_subst SpecEnv env Subst -> IdSet -> Subst `Core.extendSubstInScopeSet` IdSet dx_bndrs specBind :: TopLevelFlag -> SpecEnv -- At top-level only, this env already has the -- top level binders in scope -> InBind -> (SpecEnv -> SpecM (body, UsageDetails)) -- Process the body -> SpecM ( [OutBind] -- New bindings , body -- Body , UsageDetails) -- And info to pass upstream -- Returned UsageDetails: -- No calls for binders of this bind specBind :: forall body. TopLevelFlag -> SpecEnv -> InBind -> (SpecEnv -> SpecM (body, UsageDetails)) -> SpecM (CoreProgram, body, UsageDetails) specBind TopLevelFlag top_lvl SpecEnv env (NonRec Id fn OutExpr rhs) SpecEnv -> SpecM (body, UsageDetails) do_body = do { (rhs', rhs_uds) <- SpecEnv -> OutExpr -> SpecM (OutExpr, UsageDetails) specExpr SpecEnv env OutExpr rhs ; (body_env1, fn1) <- case top_lvl of TopLevelFlag TopLevel -> (SpecEnv, Id) -> UniqSM (SpecEnv, Id) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return (SpecEnv env, Id fn) TopLevelFlag NotTopLevel -> SpecEnv -> Id -> UniqSM (SpecEnv, Id) cloneBndrSM SpecEnv env Id fn ; let fn2 | Unfolding -> Bool isStableUnfolding (Id -> Unfolding idUnfolding Id fn1) = Id fn1 | Bool otherwise = Id fn1 Id -> Unfolding -> Id `setIdUnfolding` UnfoldingOpts -> OutExpr -> Unfolding mkSimpleUnfolding UnfoldingOpts defaultUnfoldingOpts OutExpr rhs' -- Update the unfolding with the perhaps-simpler or more specialised rhs' -- This is important: see Note [Update unfolding after specialisation] -- And in any case cloneBndrSM discards non-Stable unfoldings fn3 = Id -> Id floatifyIdDemandInfo Id fn2 -- We zap the demand info because the binding may float, -- which would invalidate the demand info (see #17810 for example). -- Destroying demand info is not terrible; specialisation is -- always followed soon by demand analysis. -- See Note [Floatifying demand info when floating] in GHC.Core.Opt.SetLevels body_env2 = SpecEnv body_env1 SpecEnv -> FloatedDictBinds -> SpecEnv `bringFloatedDictsIntoScope` UsageDetails -> FloatedDictBinds ud_binds UsageDetails rhs_uds SpecEnv -> Id -> SpecEnv `extendInScope` Id fn3 -- bringFloatedDictsIntoScope: see #23567 ; (body', body_uds) <- do_body body_env2 ; (fn4, spec_defns, body_uds1) <- specDefn env body_uds fn3 rhs ; let (free_uds, dump_dbs, float_all) = dumpBindUDs [fn4] body_uds1 all_free_uds = UsageDetails free_uds UsageDetails -> UsageDetails -> UsageDetails `thenUDs` UsageDetails rhs_uds pairs = [(Id, OutExpr)] spec_defns [(Id, OutExpr)] -> [(Id, OutExpr)] -> [(Id, OutExpr)] forall a. [a] -> [a] -> [a] ++ [(Id fn4, OutExpr rhs')] -- fn4 mentions the spec_defns in its rules, -- so put the latter first final_binds :: [DictBind] -- See Note [From non-recursive to recursive] final_binds | Bool -> Bool not (OrdList DictBind -> Bool forall a. OrdList a -> Bool isNilOL OrdList DictBind dump_dbs) , Bool -> Bool not ([(Id, OutExpr)] -> Bool forall a. [a] -> Bool forall (t :: * -> *) a. Foldable t => t a -> Bool null [(Id, OutExpr)] spec_defns) = [[(Id, OutExpr)] -> OrdList DictBind -> DictBind recWithDumpedDicts [(Id, OutExpr)] pairs OrdList DictBind dump_dbs] | Bool otherwise = [InBind -> DictBind mkDB (InBind -> DictBind) -> InBind -> DictBind forall a b. (a -> b) -> a -> b $ Id -> OutExpr -> InBind forall b. b -> Expr b -> Bind b NonRec Id b OutExpr r | (Id b,OutExpr r) <- [(Id, OutExpr)] pairs] [DictBind] -> [DictBind] -> [DictBind] forall a. [a] -> [a] -> [a] ++ OrdList DictBind -> [DictBind] forall a. OrdList a -> [a] fromOL OrdList DictBind dump_dbs can_float_this_one = OutExpr -> Kind -> Bool exprIsTopLevelBindable OutExpr rhs (Id -> Kind idType Id fn) -- exprIsTopLevelBindable: see Note [Care with unlifted bindings] ; if float_all && can_float_this_one then -- Rather than discard the calls mentioning the bound variables -- we float this (dictionary) binding along with the others return ([], body', all_free_uds `snocDictBinds` final_binds) else -- No call in final_uds mentions bound variables, -- so we can just leave the binding here return (map db_bind final_binds, body', all_free_uds) } specBind TopLevelFlag top_lvl SpecEnv env (Rec [(Id, OutExpr)] pairs) SpecEnv -> SpecM (body, UsageDetails) do_body -- Note [Specialising a recursive group] = do { let ([Id] bndrs,[OutExpr] rhss) = [(Id, OutExpr)] -> ([Id], [OutExpr]) forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b) unzip [(Id, OutExpr)] pairs ; (rec_env, bndrs1) <- case TopLevelFlag top_lvl of TopLevelFlag TopLevel -> (SpecEnv, [Id]) -> UniqSM (SpecEnv, [Id]) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return (SpecEnv env, [Id] bndrs) TopLevelFlag NotTopLevel -> SpecEnv -> [Id] -> UniqSM (SpecEnv, [Id]) cloneRecBndrsSM SpecEnv env [Id] bndrs ; (rhss', rhs_uds) <- mapAndCombineSM (specExpr rec_env) rhss ; (body', body_uds) <- do_body rec_env ; let scope_uds = UsageDetails body_uds UsageDetails -> UsageDetails -> UsageDetails `thenUDs` UsageDetails rhs_uds -- Includes binds and calls arising from rhss ; (bndrs2, spec_defns2, uds2) <- specDefns rec_env scope_uds (bndrs1 `zip` rhss) -- bndrs2 is like bndrs1, but with RULES added ; (bndrs3, spec_defns3, uds3) <- if null spec_defns2 -- Common case: no specialisation then return (bndrs2, [], uds2) else do { -- Specialisation occurred; do it again (bndrs3, spec_defns3, uds3) <- specDefns rec_env uds2 (bndrs2 `zip` rhss) ; return (bndrs3, spec_defns3 ++ spec_defns2, uds3) } ; let (final_uds, dumped_dbs, float_all) = dumpBindUDs bndrs1 uds3 final_bind = [(Id, OutExpr)] -> OrdList DictBind -> DictBind recWithDumpedDicts ([(Id, OutExpr)] spec_defns3 [(Id, OutExpr)] -> [(Id, OutExpr)] -> [(Id, OutExpr)] forall a. [a] -> [a] -> [a] ++ [Id] -> [OutExpr] -> [(Id, OutExpr)] forall a b. [a] -> [b] -> [(a, b)] zip [Id] bndrs3 [OutExpr] rhss') OrdList DictBind dumped_dbs ; if float_all then return ([], body', final_uds `snocDictBind` final_bind) else return ([db_bind final_bind], body', final_uds) } --------------------------- specDefns :: SpecEnv -> UsageDetails -- Info on how it is used in its scope -> [(OutId,InExpr)] -- The things being bound and their un-processed RHS -> SpecM ([OutId], -- Original Ids with RULES added [(OutId,OutExpr)], -- Extra, specialised bindings UsageDetails) -- Stuff to fling upwards from the specialised versions -- Specialise a list of bindings (the contents of a Rec), but flowing usages -- upwards binding by binding. Example: { f = ...g ...; g = ...f .... } -- Then if the input CallDetails has a specialised call for 'g', whose specialisation -- in turn generates a specialised call for 'f', we catch that in this one sweep. -- But not vice versa (it's a fixpoint problem). specDefns :: SpecEnv -> UsageDetails -> [(Id, OutExpr)] -> SpecM ([Id], [(Id, OutExpr)], UsageDetails) specDefns SpecEnv _env UsageDetails uds [] = ([Id], [(Id, OutExpr)], UsageDetails) -> SpecM ([Id], [(Id, OutExpr)], UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return ([], [], UsageDetails uds) specDefns SpecEnv env UsageDetails uds ((Id bndr,OutExpr rhs):[(Id, OutExpr)] pairs) = do { (bndrs1, spec_defns1, uds1) <- SpecEnv -> UsageDetails -> [(Id, OutExpr)] -> SpecM ([Id], [(Id, OutExpr)], UsageDetails) specDefns SpecEnv env UsageDetails uds [(Id, OutExpr)] pairs ; (bndr1, spec_defns2, uds2) <- specDefn env uds1 bndr rhs ; return (bndr1 : bndrs1, spec_defns1 ++ spec_defns2, uds2) } --------------------------- specDefn :: SpecEnv -> UsageDetails -- Info on how it is used in its scope -> OutId -> InExpr -- The thing being bound and its un-processed RHS -> SpecM (Id, -- Original Id with added RULES [(Id,CoreExpr)], -- Extra, specialised bindings UsageDetails) -- Stuff to fling upwards from the specialised versions specDefn :: SpecEnv -> UsageDetails -> Id -> OutExpr -> SpecM (Id, [(Id, OutExpr)], UsageDetails) specDefn SpecEnv env UsageDetails body_uds Id fn OutExpr rhs = do { let (UsageDetails body_uds_without_me, [CallInfo] calls_for_me) = Id -> UsageDetails -> (UsageDetails, [CallInfo]) callsForMe Id fn UsageDetails body_uds rules_for_me :: [CoreRule] rules_for_me = Id -> [CoreRule] idCoreRules Id fn -- Bring into scope the binders from the floated dicts env_w_dict_bndrs :: SpecEnv env_w_dict_bndrs = SpecEnv -> FloatedDictBinds -> SpecEnv bringFloatedDictsIntoScope SpecEnv env (UsageDetails -> FloatedDictBinds ud_binds UsageDetails body_uds) ; (rules, spec_defns, spec_uds) <- Bool -> SpecEnv -> [CoreRule] -> [CallInfo] -> Id -> OutExpr -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) specCalls Bool False SpecEnv env_w_dict_bndrs [CoreRule] rules_for_me [CallInfo] calls_for_me Id fn OutExpr rhs ; return ( fn `addIdSpecialisations` rules , spec_defns , body_uds_without_me `thenUDs` spec_uds) } -- It's important that the `thenUDs` is this way -- round, because body_uds_without_me may bind -- dictionaries that are used in calls_for_me passed -- to specDefn. So the dictionary bindings in -- spec_uds may mention dictionaries bound in -- body_uds_without_me --------------------------- specCalls :: Bool -- True => specialising imported fn -- False => specialising local fn -> SpecEnv -> [CoreRule] -- Existing RULES for the fn -> [CallInfo] -> OutId -> InExpr -> SpecM SpecInfo -- New rules, specialised bindings, and usage details -- This function checks existing rules, and does not create -- duplicate ones. So the caller does not need to do this filtering. -- See `alreadyCovered` type SpecInfo = ( [CoreRule] -- Specialisation rules , [(Id,CoreExpr)] -- Specialised definition , UsageDetails ) -- Usage details from specialised RHSs specCalls :: Bool -> SpecEnv -> [CoreRule] -> [CallInfo] -> Id -> OutExpr -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) specCalls Bool spec_imp SpecEnv env [CoreRule] existing_rules [CallInfo] calls_for_me Id fn OutExpr rhs -- The first case is the interesting one | [CallInfo] -> Bool forall (f :: * -> *) a. Foldable f => f a -> Bool notNull [CallInfo] calls_for_me -- And there are some calls to specialise Bool -> Bool -> Bool && Bool -> Bool not (Activation -> Bool isNeverActive (Id -> Activation idInlineActivation Id fn)) -- Don't specialise NOINLINE things -- See Note [Auto-specialisation and RULES] -- -- Don't specialise OPAQUE things, see Note [OPAQUE pragma]. -- Since OPAQUE things are always never-active (see -- GHC.Parser.PostProcess.mkOpaquePragma) this guard never fires for -- OPAQUE things. -- && not (certainlyWillInline (idUnfolding fn)) -- And it's not small -- See Note [Inline specialisations] for why we do not -- switch off specialisation for inline functions = -- pprTrace "specCalls: some" (vcat -- [ text "function" <+> ppr fn -- , text "calls:" <+> ppr calls_for_me -- , text "subst" <+> ppr (se_subst env) ]) $ (([CoreRule], [(Id, OutExpr)], UsageDetails) -> CallInfo -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails)) -> ([CoreRule], [(Id, OutExpr)], UsageDetails) -> [CallInfo] -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) forall (t :: * -> *) (m :: * -> *) b a. (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b foldlM ([CoreRule], [(Id, OutExpr)], UsageDetails) -> CallInfo -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) spec_call ([], [], UsageDetails emptyUDs) [CallInfo] calls_for_me | Bool otherwise -- No calls or RHS doesn't fit our preconceptions = Bool -> String -> SDoc -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) forall a. HasCallStack => Bool -> String -> SDoc -> a -> a warnPprTrace (Bool -> Bool not (OutExpr -> Bool exprIsTrivial OutExpr rhs) Bool -> Bool -> Bool && [CallInfo] -> Bool forall (f :: * -> *) a. Foldable f => f a -> Bool notNull [CallInfo] calls_for_me) String "Missed specialisation opportunity for" (Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id fn SDoc -> SDoc -> SDoc forall doc. IsDoc doc => doc -> doc -> doc $$ SDoc trace_doc) (SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails)) -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) forall a b. (a -> b) -> a -> b $ -- Note [Specialisation shape] -- pprTrace "specCalls: none" (ppr fn <+> ppr calls_for_me) $ ([CoreRule], [(Id, OutExpr)], UsageDetails) -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return ([], [], UsageDetails emptyUDs) where trace_doc :: SDoc trace_doc = [SDoc] -> SDoc forall doc. IsLine doc => [doc] -> doc sep [ [Id] -> SDoc forall a. Outputable a => a -> SDoc ppr [Id] rhs_bndrs, Activation -> SDoc forall a. Outputable a => a -> SDoc ppr (Id -> Activation idInlineActivation Id fn) ] fn_type :: Kind fn_type = Id -> Kind idType Id fn fn_arity :: Int fn_arity = Id -> Int idArity Id fn fn_unf :: Unfolding fn_unf = Id -> Unfolding realIdUnfolding Id fn -- Ignore loop-breaker-ness here inl_prag :: InlinePragma inl_prag = Id -> InlinePragma idInlinePragma Id fn inl_act :: Activation inl_act = InlinePragma -> Activation inlinePragmaActivation InlinePragma inl_prag is_active :: Activation -> Bool is_active = CompilerPhase -> Activation -> Bool isActive (Activation -> CompilerPhase beginPhase Activation inl_act) :: Activation -> Bool -- is_active: inl_act is the activation we are going to put in the new -- SPEC rule; so we want to see if it is covered by another rule with -- that same activation. is_local :: Bool is_local = Id -> Bool isLocalId Id fn is_dfun :: Bool is_dfun = Id -> Bool isDFunId Id fn dflags :: DynFlags dflags = SpecEnv -> DynFlags se_dflags SpecEnv env this_mod :: Module this_mod = SpecEnv -> Module se_module SpecEnv env -- Figure out whether the function has an INLINE pragma -- See Note [Inline specialisations] ([Id] rhs_bndrs, OutExpr rhs_body) = OutExpr -> ([Id], OutExpr) collectBindersPushingCo OutExpr rhs -- See Note [Account for casts in binding] ---------------------------------------------------------- -- Specialise to one particular call pattern spec_call :: SpecInfo -- Accumulating parameter -> CallInfo -- Call instance -> SpecM SpecInfo spec_call :: ([CoreRule], [(Id, OutExpr)], UsageDetails) -> CallInfo -> SpecM ([CoreRule], [(Id, OutExpr)], UsageDetails) spec_call spec_acc :: ([CoreRule], [(Id, OutExpr)], UsageDetails) spec_acc@([CoreRule] rules_acc, [(Id, OutExpr)] pairs_acc, UsageDetails uds_acc) _ci :: CallInfo _ci@(CI { ci_key :: CallInfo -> [SpecArg] ci_key = [SpecArg] call_args }) = -- See Note [Specialising Calls] do { let all_call_args :: [SpecArg] all_call_args | Bool is_dfun = [SpecArg] saturating_call_args -- See Note [Specialising DFuns] | Bool otherwise = [SpecArg] call_args saturating_call_args :: [SpecArg] saturating_call_args = [SpecArg] call_args [SpecArg] -> [SpecArg] -> [SpecArg] forall a. [a] -> [a] -> [a] ++ (Id -> SpecArg) -> [Id] -> [SpecArg] forall a b. (a -> b) -> [a] -> [b] map Id -> SpecArg mk_extra_dfun_arg ([SpecArg] -> [Id] -> [Id] forall b a. [b] -> [a] -> [a] dropList [SpecArg] call_args [Id] rhs_bndrs) mk_extra_dfun_arg :: Id -> SpecArg mk_extra_dfun_arg Id bndr | Id -> Bool isTyVar Id bndr = SpecArg UnspecType | Bool otherwise = SpecArg UnspecArg ; ( useful, rhs_env2, leftover_bndrs , rule_bndrs, rule_lhs_args , spec_bndrs1, dx_binds, spec_args) <- SpecEnv -> [Id] -> [SpecArg] -> SpecM (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) specHeader SpecEnv env [Id] rhs_bndrs [SpecArg] all_call_args -- ; pprTrace "spec_call" (vcat -- [ text "fun: " <+> ppr fn -- , text "call info: " <+> ppr _ci -- , text "useful: " <+> ppr useful -- , text "rule_bndrs:" <+> ppr rule_bndrs -- , text "lhs_args: " <+> ppr rule_lhs_args -- , text "spec_bndrs1:" <+> ppr spec_bndrs1 -- , text "leftover_bndrs:" <+> pprIds leftover_bndrs -- , text "spec_args: " <+> ppr spec_args -- , text "dx_binds: " <+> ppr dx_binds -- , text "rhs_bndrs" <+> ppr rhs_bndrs -- , text "rhs_body" <+> ppr rhs_body -- , text "rhs_env2: " <+> ppr (se_subst rhs_env2) -- , ppr dx_binds ]) $ -- return () ; let all_rules = [CoreRule] rules_acc [CoreRule] -> [CoreRule] -> [CoreRule] forall a. [a] -> [a] -> [a] ++ [CoreRule] existing_rules -- all_rules: we look both in the rules_acc (generated by this invocation -- of specCalls), and in existing_rules (passed in to specCalls) ; if not useful -- No useful specialisation || alreadyCovered rhs_env2 rule_bndrs fn rule_lhs_args is_active all_rules -- See (SC1) in Note [Specialisations already covered] then return spec_acc else do { -- Run the specialiser on the specialised RHS -- The "1" suffix is before we maybe add the void arg ; (rhs_body', rhs_uds) <- specExpr rhs_env2 rhs_body -- Add the { d1' = dx1; d2' = dx2 } usage stuff -- to the rhs_uds; see Note [Specialising Calls] ; let rhs_uds_w_dx = [DictBind] dx_binds [DictBind] -> UsageDetails -> UsageDetails `consDictBinds` UsageDetails rhs_uds spec_rhs_bndrs = [Id] spec_bndrs1 [Id] -> [Id] -> [Id] forall a. [a] -> [a] -> [a] ++ [Id] leftover_bndrs (spec_uds, dumped_dbs) = dumpUDs spec_rhs_bndrs rhs_uds_w_dx spec_rhs1 = [Id] -> OutExpr -> OutExpr forall b. [b] -> Expr b -> Expr b mkLams [Id] spec_rhs_bndrs (OutExpr -> OutExpr) -> OutExpr -> OutExpr forall a b. (a -> b) -> a -> b $ OrdList DictBind -> OutExpr -> OutExpr wrapDictBindsE OrdList DictBind dumped_dbs OutExpr rhs_body' spec_fn_ty1 = HasDebugCallStack => OutExpr -> Kind OutExpr -> Kind exprType OutExpr spec_rhs1 -- Maybe add a void arg to the specialised function, -- to avoid unlifted bindings -- See Note [Specialisations Must Be Lifted] -- C.f. GHC.Core.Opt.WorkWrap.Utils.needsVoidWorkerArg add_void_arg = HasDebugCallStack => Kind -> Bool Kind -> Bool isUnliftedType Kind spec_fn_ty1 Bool -> Bool -> Bool && Bool -> Bool not (Id -> Bool isJoinId Id fn) (spec_bndrs, spec_rhs, spec_fn_ty) | add_void_arg = ( voidPrimId : spec_bndrs1 , Lam voidArgId spec_rhs1 , mkVisFunTyMany unboxedUnitTy spec_fn_ty1) | otherwise = (spec_bndrs1, spec_rhs1, spec_fn_ty1) join_arity_decr = [OutExpr] -> Int forall a. [a] -> Int forall (t :: * -> *) a. Foldable t => t a -> Int length [OutExpr] rule_lhs_args Int -> Int -> Int forall a. Num a => a -> a -> a - [Id] -> Int forall a. [a] -> Int forall (t :: * -> *) a. Foldable t => t a -> Int length [Id] spec_bndrs -------------------------------------- -- Add a suitable unfolding; see Note [Inline specialisations] -- The wrap_unf_body applies the original unfolding to the specialised -- arguments, not forgetting to wrap the dx_binds around the outside (#22358) simpl_opts = DynFlags -> SimpleOpts initSimpleOpts DynFlags dflags wrap_unf_body OutExpr body = (DictBind -> OutExpr -> OutExpr) -> OutExpr -> [DictBind] -> OutExpr forall a b. (a -> b -> b) -> b -> [a] -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr (InBind -> OutExpr -> OutExpr forall b. Bind b -> Expr b -> Expr b Let (InBind -> OutExpr -> OutExpr) -> (DictBind -> InBind) -> DictBind -> OutExpr -> OutExpr forall b c a. (b -> c) -> (a -> b) -> a -> c . DictBind -> InBind db_bind) (OutExpr body OutExpr -> [OutExpr] -> OutExpr forall b. Expr b -> [Expr b] -> Expr b `mkApps` [OutExpr] spec_args) [DictBind] dx_binds spec_unf = SimpleOpts -> [Id] -> (OutExpr -> OutExpr) -> [OutExpr] -> Unfolding -> Unfolding specUnfolding SimpleOpts simpl_opts [Id] spec_bndrs OutExpr -> OutExpr wrap_unf_body [OutExpr] rule_lhs_args Unfolding fn_unf -------------------------------------- -- Adding arity information just propagates it a bit faster -- See Note [Arity decrease] in GHC.Core.Opt.Simplify -- Copy InlinePragma information from the parent Id. -- So if f has INLINE[1] so does spec_fn arity_decr = (OutExpr -> Bool) -> [OutExpr] -> Int forall a. (a -> Bool) -> [a] -> Int count OutExpr -> Bool forall b. Expr b -> Bool isValArg [OutExpr] rule_lhs_args Int -> Int -> Int forall a. Num a => a -> a -> a - (Id -> Bool) -> [Id] -> Int forall a. (a -> Bool) -> [a] -> Int count Id -> Bool isId [Id] spec_bndrs spec_inl_prag | Bool -> Bool not Bool is_local -- See Note [Specialising imported functions] , OccInfo -> Bool isStrongLoopBreaker (Id -> OccInfo idOccInfo Id fn) -- in GHC.Core.Opt.OccurAnal = InlinePragma neverInlinePragma | Bool otherwise = InlinePragma inl_prag spec_fn_info = IdInfo vanillaIdInfo IdInfo -> Int -> IdInfo `setArityInfo` Int -> Int -> Int forall a. Ord a => a -> a -> a max Int 0 (Int fn_arity Int -> Int -> Int forall a. Num a => a -> a -> a - Int arity_decr) IdInfo -> InlinePragma -> IdInfo `setInlinePragInfo` InlinePragma spec_inl_prag IdInfo -> Unfolding -> IdInfo `setUnfoldingInfo` Unfolding spec_unf -- Compute the IdDetails of the specialise Id -- See Note [Transfer IdDetails during specialisation] spec_fn_details = case Id -> IdDetails idDetails Id fn of JoinId Int join_arity Maybe [CbvMark] _ -> Int -> Maybe [CbvMark] -> IdDetails JoinId (Int join_arity Int -> Int -> Int forall a. Num a => a -> a -> a - Int join_arity_decr) Maybe [CbvMark] forall a. Maybe a Nothing DFunId Bool unary -> Bool -> IdDetails DFunId Bool unary IdDetails _ -> IdDetails VanillaId ; spec_fn <- newSpecIdSM (idName fn) spec_fn_ty spec_fn_details spec_fn_info ; let -- The rule to put in the function's specialisation is: -- forall x @b d1' d2'. -- f x @T1 @b @T2 d1' d2' = f1 x @b -- See Note [Specialising Calls] herald | Bool spec_imp = -- Specialising imported fn String -> SDoc forall doc. IsLine doc => String -> doc text String "SPEC/" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <> Module -> SDoc forall a. Outputable a => a -> SDoc ppr Module this_mod | Bool otherwise = -- Specialising local fn String -> SDoc forall doc. IsLine doc => String -> doc text String "SPEC" spec_rule = DynFlags -> Module -> Bool -> Activation -> SDoc -> Id -> [Id] -> [OutExpr] -> OutExpr -> CoreRule mkSpecRule DynFlags dflags Module this_mod Bool True Activation inl_act SDoc herald Id fn [Id] rule_bndrs [OutExpr] rule_lhs_args (OutExpr -> [Id] -> OutExpr forall b. Expr b -> [Id] -> Expr b mkVarApps (Id -> OutExpr forall b. Id -> Expr b Var Id spec_fn) [Id] spec_bndrs) spec_f_w_arity = Id spec_fn _rule_trace_doc = [SDoc] -> SDoc forall doc. IsDoc doc => [doc] -> doc vcat [ Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id fn SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc dcolon SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> Kind -> SDoc forall a. Outputable a => a -> SDoc ppr Kind fn_type , Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id spec_fn SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc dcolon SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> Kind -> SDoc forall a. Outputable a => a -> SDoc ppr Kind spec_fn_ty , [Id] -> SDoc forall a. Outputable a => a -> SDoc ppr [Id] rhs_bndrs, [SpecArg] -> SDoc forall a. Outputable a => a -> SDoc ppr [SpecArg] call_args , CoreRule -> SDoc forall a. Outputable a => a -> SDoc ppr CoreRule spec_rule , String -> SDoc forall doc. IsLine doc => String -> doc text String "acc" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> [CoreRule] -> SDoc forall a. Outputable a => a -> SDoc ppr [CoreRule] rules_acc , String -> SDoc forall doc. IsLine doc => String -> doc text String "existing" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> [CoreRule] -> SDoc forall a. Outputable a => a -> SDoc ppr [CoreRule] existing_rules ] ; -- pprTrace "spec_call: rule" _rule_trace_doc return ( spec_rule : rules_acc , (spec_f_w_arity, spec_rhs) : pairs_acc , spec_uds `thenUDs` uds_acc ) } } alreadyCovered :: SpecEnv -> [Var] -> Id -> [CoreExpr] -- LHS of possible new rule -> (Activation -> Bool) -- Which rules are active -> [CoreRule] -> Bool -- Note [Specialisations already covered] esp (SC2) alreadyCovered :: SpecEnv -> [Id] -> Id -> [OutExpr] -> (Activation -> Bool) -> [CoreRule] -> Bool alreadyCovered SpecEnv env [Id] bndrs Id fn [OutExpr] args Activation -> Bool is_active [CoreRule] rules = case SpecEnv -> Id -> [OutExpr] -> (Activation -> Bool) -> [CoreRule] -> Maybe (CoreRule, OutExpr) specLookupRule SpecEnv env Id fn [OutExpr] args Activation -> Bool is_active [CoreRule] rules of Maybe (CoreRule, OutExpr) Nothing -> Bool False Just (CoreRule rule, OutExpr _) | CoreRule -> Bool isAutoRule CoreRule rule -> -- Discard identical rules -- We know that (fn args) is an instance of RULE -- Check if RULE is an instance of (fn args) InScopeSet -> [Id] -> [OutExpr] -> CoreRule -> Bool ruleLhsIsMoreSpecific InScopeSet in_scope [Id] bndrs [OutExpr] args CoreRule rule | Bool otherwise -> Bool True -- User rules dominate where in_scope :: InScopeSet in_scope = Subst -> InScopeSet substInScopeSet (SpecEnv -> Subst se_subst SpecEnv env) -- Convenience function for invoking lookupRule from Specialise -- The SpecEnv's InScopeSet should include all the Vars in the [CoreExpr] specLookupRule :: SpecEnv -> Id -> [CoreExpr] -> (Activation -> Bool) -- Which rules are active -> [CoreRule] -> Maybe (CoreRule, CoreExpr) specLookupRule :: SpecEnv -> Id -> [OutExpr] -> (Activation -> Bool) -> [CoreRule] -> Maybe (CoreRule, OutExpr) specLookupRule SpecEnv env Id fn [OutExpr] args Activation -> Bool is_active [CoreRule] rules = RuleOpts -> InScopeEnv -> (Activation -> Bool) -> Id -> [OutExpr] -> [CoreRule] -> Maybe (CoreRule, OutExpr) lookupRule RuleOpts ropts InScopeEnv in_scope_env Activation -> Bool is_active Id fn [OutExpr] args [CoreRule] rules where dflags :: DynFlags dflags = SpecEnv -> DynFlags se_dflags SpecEnv env in_scope :: InScopeSet in_scope = Subst -> InScopeSet substInScopeSet (SpecEnv -> Subst se_subst SpecEnv env) in_scope_env :: InScopeEnv in_scope_env = InScopeSet -> (Id -> Unfolding) -> InScopeEnv ISE InScopeSet in_scope ((Activation -> Bool) -> Id -> Unfolding whenActiveUnfoldingFun Activation -> Bool is_active) ropts :: RuleOpts ropts = DynFlags -> RuleOpts initRuleOpts DynFlags dflags {- Note [Specialising DFuns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DFuns have a special sort of unfolding (DFunUnfolding), and it is hard to specialise a DFunUnfolding to give another DFunUnfolding unless the DFun is fully applied (#18120). So, in the case of DFunIds we simply extend the CallKey with trailing UnspecTypes/UnspecArgs, so that we'll generate a rule that completely saturates the DFun. There is an ASSERT that checks this, in the DFunUnfolding case of GHC.Core.Unfold.Make.specUnfolding. Note [Transfer IdDetails during specialisation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When specialising a function, `newSpecIdSM` comes up with a fresh Id the specialised RHS will be bound to. It is critical that we get the `IdDetails` of the specialised Id correct: * JoinId: We want the specialised Id to be a join point, too. But we have to carefully adjust the arity * DFunId: It is crucial that we also make the new Id a DFunId. - First, because it obviously /is/ a DFun, having a DFunUnfolding and all that; see Note [Specialising DFuns] - Second, DFuns get very delicate special treatment in the demand analyser; see GHC.Core.Opt.DmdAnal.enterDFun. If the specialised function isn't also a DFunId, this special treatment doesn't happen, so the demand analyser makes a too-strict DFun, and we get an infinite loop. See Note [Do not strictify a DFun's parameter dictionaries] in GHC.Core.Opt.DmdAnal. #22549 describes the loop, and (lower down) a case where a /specialised/ DFun caused a loop. * WorkerLikeId: Introduced by WW, so after Specialise. Nevertheless, they come up when specialising imports. We must keep them as VanillaIds because WW will detect them as WorkerLikeIds again. That is, unless specialisation allows unboxing of all previous CBV args, in which case sticking to VanillaIds was the only correct choice to begin with. * RecSelId, DataCon*Id, ClassOpId, PrimOpId, FCallId, CoVarId, TickBoxId: Never specialised. Note [Specialisation Must Preserve Sharing] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider a function: f :: forall a. Eq a => a -> blah f = if expensive then f1 else f2 As written, all calls to 'f' will share 'expensive'. But if we specialise 'f' at 'Int', eg: $sfInt = SUBST[a->Int,dict->dEqInt] (if expensive then f1 else f2) RULE "SPEC f" forall (d :: Eq Int). f Int _ = $sfIntf We've now lost sharing between 'f' and '$sfInt' for 'expensive'. Yikes! To avoid this, we only generate specialisations for functions whose arity is enough to bind all of the arguments we need to specialise. This ensures our specialised functions don't do any work before receiving all of their dicts, and thus avoids the 'f' case above. Note [Specialisations Must Be Lifted] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider a function 'f': f = forall a. Eq a => Array# a used like case x of True -> ...f @Int dEqInt... False -> 0 Naively, we might generate an (expensive) specialisation $sfInt :: Array# Int even in the case that @x = False@! Instead, we add a dummy 'Void#' argument to the specialisation '$sfInt' ($sfInt :: Void# -> Array# Int) in order to preserve laziness. Note [Care with unlifted bindings] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider (#22998) f x = let x::ByteArray# = <some literal> n::Natural = NB x in wombat @192827 (n |> co) where co :: Natural ~ KnownNat 192827 wombat :: forall (n:Nat). KnownNat n => blah Left to itself, the specialiser would float the bindings for `x` and `n` to top level, so we can specialise `wombat`. But we can't have a top-level ByteArray# (see Note [Core letrec invariant] in GHC.Core). Boo. This is pretty exotic, so we take a simple way out: in specBind (the NonRec case) do not float the binding itself unless it satisfies exprIsTopLevelBindable. This is conservative: maybe the RHS of `x` has a free var that would stop it floating to top level anyway; but that is hard to spot (since we don't know what the non-top-level in-scope binders are) and rare (since the binding must satisfy Note [Core let-can-float invariant] in GHC.Core). Note [Specialising Calls] ~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we have a function with a complicated type: f :: forall a b c. Int -> Eq a => Show b => c -> Blah f @a @b @c i dEqA dShowA x = blah and suppose it is called at: f 7 @T1 @T2 @T3 dEqT1 ($dfShow dShowT2) t3 This call is described as a 'CallInfo' whose 'ci_key' is: [ SpecType T1, SpecType T2, UnspecType, UnspecArg, SpecDict dEqT1 , SpecDict ($dfShow dShowT2), UnspecArg ] Why are 'a' and 'b' identified as 'SpecType', while 'c' is 'UnspecType'? Because we must specialise the function on type variables that appear free in its *dictionary* arguments; but not on type variables that do not appear in any dictionaries, i.e. are fully polymorphic. Because this call has dictionaries applied, we'd like to specialise the call on any type argument that appears free in those dictionaries. In this case, those are [a :-> T1, b :-> T2]. We also need to substitute the dictionary binders with their specialised dictionaries. The simplest substitution would be [dEqA :-> dEqT1, dShowA :-> $dfShow dShowT2], but this duplicates work, since `$dfShow dShowT2` is a function application. Therefore, we also want to *float the dictionary out* (via bindAuxiliaryDict), creating a new dict binding dShow1 = $dfShow dShowT2 and the substitution [dEqA :-> dEqT1, dShowA :-> dShow1]. With the substitutions in hand, we can generate a specialised function: $sf :: forall c. Int -> c -> Blah $sf = SUBST[a :-> T1, b :-> T2, dEqA :-> dEqT1, dShowA :-> dShow1] (\@c i x -> blah) Note that the substitution is applied to the whole thing. This is convenient, but just slightly fragile. Notably: * There had better be no name clashes in a/b/c We must construct a rewrite rule: RULE "SPEC f @T1 @T2 _" forall (@c :: Type) (i :: Int) (d1 :: Eq T1) (d2 :: Show T2). f @T1 @T2 @c i d1 d2 = $sf @c i In the rule, d1 and d2 are just wildcards, not used in the RHS. Note additionally that 'x' isn't captured by this rule --- we bind only enough etas in order to capture all of the *specialised* arguments. Note [Drop dead args from specialisations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When specialising a function, it’s possible some of the arguments may actually be dead. For example, consider: f :: forall a. () -> Show a => a -> String f x y = show y ++ "!" We might generate the following CallInfo for `f @Int`: [SpecType Int, UnspecArg, SpecDict $dShowInt, UnspecArg] Normally we’d include both the x and y arguments in the specialisation, since we’re not specialising on either of them. But that’s silly, since x is actually unused! So we might as well drop it in the specialisation: $sf :: Int -> String $sf y = show y ++ "!" {-# RULE "SPEC f @Int" forall x. f @Int x $dShow = $sf #-} This doesn’t save us much, since the arg would be removed later by worker/wrapper, anyway, but it’s easy to do. Wrinkles * Note that we only drop dead arguments if: 1. We don’t specialise on them. 2. They come before an argument we do specialise on. Doing the latter would require eta-expanding the RULE, which could make it match less often, so it’s not worth it. Doing the former could be more useful --- it would stop us from generating pointless specialisations --- but it’s more involved to implement and unclear if it actually provides much benefit in practice. * If the function has a stable unfolding, specHeader has to come up with arguments to pass to that stable unfolding, when building the stable unfolding of the specialised function: this is the last field in specHeader's big result tuple. The right thing to do is to produce a LitRubbish; it should rapidly disappear. Rather like GHC.Core.Opt.WorkWrap.Utils.mk_absent_let. Note [Specialisation modulo dictionary selectors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In #19644, we discovered that the ClassOp/DFun rules from Note [ClassOp/DFun selection] inhibit transitive specialisation. Example, inspired by T17966: class C a where m :: Show b => a -> b -> String dummy :: a -> () -- Force a datatype dictionary representation instance C Int where m a b = show a ++ show b dummy _ = () f :: (C a, Show b) => a -> b -> String f a b = m a b ++ "!" {-# INLINABLE[0] f #-} main = putStrLn (f (42::Int) (True::Bool)) Here, we specialise `f` at `Int` and `Bool`, giving $dC = $fCInt $dShow = GHC.Show.$fShowBool $sf (a::Int) (b::Bool) = ... (m @Int $dC @Bool $dShow a b) ... Here `m` is just a DictSel, so there is (apparently) nothing to specialise! However, the next Simplifier run will expose the rewritten instance method: ... $fCInt_$cm @Bool $fShowBool a b ... where $fCInt_$cm is the instance method for `m` in `instance C Int`: $fCInt_$cm :: forall b. Show b => Int -> b -> String $fCInt_$cm b d x y = show @Int $dShowInt x ++ show @b d y We want to specialise this! How? By doing the method-selection rewrite in the Specialiser. Hence 1. In the App case of 'specExpr', try to apply the ClassOp/DFun rule on the head of the application, repeatedly, via 'fireRewriteRules'. 2. Attach an unfolding to freshly-bound dictionary ids such as `$dC` and `$dShow` in `bindAuxiliaryDict`, so that we can exploit the unfolding in 'fireRewriteRules' to do the ClassOp/DFun rewrite. NB: Without (2), (1) would be pointless, because 'lookupRule' wouldn't be able to look into the RHS of `$dC` to see the DFun. Note [Zap occ info in rule binders] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we generate a specialisation RULE, we need to drop occurrence info on the binders. If we don’t, things go wrong when we specialise a function like f :: forall a. () -> Show a => a -> String f x y = show y ++ "!" since we’ll generate a RULE like RULE "SPEC f @Int" forall x [Occ=Dead]. f @Int x $dShow = $sf and Core Lint complains, even though x only appears on the LHS (due to Note [Drop dead args from specialisations]). Why is that a Lint error? Because the arguments on the LHS of a rule are syntactically expressions, not patterns, so Lint treats the appearance of x as a use rather than a binding. Fortunately, the solution is simple: we just make sure to zap the occ info before using ids as wildcard binders in a rule. Note [Account for casts in binding] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider f :: Eq a => a -> IO () {-# INLINABLE f StableUnf = (/\a \(d:Eq a) (x:a). blah) |> g #-} f = ... In f's stable unfolding we have done some modest simplification which has pushed the cast to the outside. (I wonder if this is the Right Thing, but it's what happens now; see GHC.Core.Opt.Simplify.Utils Note [Casts and lambdas].) Now that stable unfolding must be specialised, so we want to push the cast back inside. It would be terrible if the cast defeated specialisation! Hence the use of collectBindersPushingCo. Note [Evidence foralls] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose (#12212) that we are specialising f :: forall a b. (Num a, F a ~ F b) => blah with a=b=Int. Then the RULE will be something like RULE forall (d:Num Int) (g :: F Int ~ F Int). f Int Int d g = f_spec But both varToCoreExpr (when constructing the LHS args), and the simplifier (when simplifying the LHS args), will transform to RULE forall (d:Num Int) (g :: F Int ~ F Int). f Int Int d <F Int> = f_spec by replacing g with Refl. So now 'g' is unbound, which results in a later crash. So we use Refl right off the bat, and do not forall-quantify 'g': * varToCoreExpr generates a Refl * exprsFreeIdsList returns the Ids bound by the args, which won't include g You might wonder if this will match as often, but the simplifier replaces complicated Refl coercions with Refl pretty aggressively. Note [Orphans and auto-generated rules] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we specialise an INLINABLE function, or when we have -fspecialise-aggressively, we auto-generate RULES that are orphans. We don't want to warn about these, or we'd generate a lot of warnings. Thus, we only warn about user-specified orphan rules. Indeed, we don't even treat the module as an orphan module if it has auto-generated *rule* orphans. Orphan modules are read every time we compile, so they are pretty obtrusive and slow down every compilation, even non-optimised ones. (Reason: for type class instances it's a type correctness issue.) But specialisation rules are strictly for *optimisation* only so it's fine not to read the interface. What this means is that a SPEC rules from auto-specialisation in module M will be used in other modules only if M.hi has been read for some other reason, which is actually pretty likely. Note [From non-recursive to recursive] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Even in the non-recursive case, if any dict-binds depend on 'fn' we might have built a recursive knot f a d x = <blah> MkUD { ud_binds = NonRec d7 (MkD ..f..) , ud_calls = ...(f T d7)... } The we generate Rec { fs x = <blah>[T/a, d7/d] f a d x = <blah> RULE f T _ = fs d7 = ...f... } Here the recursion is only through the RULE. However we definitely should /not/ make the Rec in this wildly common case: d = ... MkUD { ud_binds = NonRec d7 (...d...) , ud_calls = ...(f T d7)... } Here we want simply to add d to the floats, giving MkUD { ud_binds = NonRec d (...) NonRec d7 (...d...) , ud_calls = ...(f T d7)... } In general, we need only make this Rec if - there are some specialisations (spec_binds non-empty) - there are some dict_binds that depend on f (dump_dbs non-empty) Note [Avoiding loops (DFuns)] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When specialising /dictionary functions/ we must be very careful to avoid building loops. Here is an example that bit us badly, on several distinct occasions. Here is one: #3591 class Eq a => C a instance Eq [a] => C [a] This translates to dfun :: Eq [a] -> C [a] dfun a d = MkD a d (meth d) d4 :: Eq [T] = <blah> d2 :: C [T] = dfun T d4 d1 :: Eq [T] = $p1 d2 d3 :: C [T] = dfun T d1 None of these definitions is recursive. What happened was that we generated a specialisation: RULE forall d. dfun T d = dT :: C [T] dT = (MkD a d (meth d)) [T/a, d1/d] = MkD T d1 (meth d1) But now we use the RULE on the RHS of d2, to get d2 = dT = MkD d1 (meth d1) d1 = $p1 d2 and now d1 is bottom! The problem is that when specialising 'dfun' we should first dump "below" the binding all floated dictionary bindings that mention 'dfun' itself. So d2 and d3 (and hence d1) must be placed below 'dfun', and thus unavailable to it when specialising 'dfun'. That in turn means that the call (dfun T d1) must be discarded. On the other hand, the call (dfun T d4) is fine, assuming d4 doesn't mention dfun. Solution: Discard all calls that mention dictionaries that depend (directly or indirectly) on the dfun we are specialising. This is done by 'filterCalls' Note [Avoiding loops (non-DFuns)] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The whole Note [Avoiding loops (DFuns)] things applies only to DFuns. It's important /not/ to apply filterCalls to non-DFuns. For example: class C a where { foo,bar :: [a] -> [a] } instance C Int where foo x = r_bar x bar xs = reverse xs r_bar :: C a => [a] -> [a] r_bar xs = bar (xs ++ xs) That translates to: r_bar a (c::C a) (xs::[a]) = bar a d (xs ++ xs) Rec { $fCInt :: C Int = MkC foo_help reverse foo_help (xs::[Int]) = r_bar Int $fCInt xs } The call (r_bar $fCInt) mentions $fCInt, which mentions foo_help, which mentions r_bar But we DO want to specialise r_bar at Int: Rec { $fCInt :: C Int = MkC foo_help reverse foo_help (xs::[Int]) = r_bar Int $fCInt xs r_bar a (c::C a) (xs::[a]) = bar a d (xs ++ xs) RULE r_bar Int _ = r_bar_Int r_bar_Int xs = bar Int $fCInt (xs ++ xs) } Note that, because of its RULE, r_bar joins the recursive group. (In this case it'll unravel a short moment later.) See test simplCore/should_compile/T19599a. Another example is #19599, which looked like this: class (Show a, Enum a) => MyShow a where myShow :: a -> String myShow_impl :: MyShow a => a -> String foo :: Int -> String foo = myShow_impl @Int $fMyShowInt Rec { $fMyShowInt = MkMyShowD $fEnumInt $fShowInt $cmyShow ; $cmyShow = myShow_impl @Int $fMyShowInt } Here, we really do want to specialise `myShow_impl @Int $fMyShowInt`. Note [Specialising a recursive group] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider let rec { f x = ...g x'... ; g y = ...f y'.... } in f 'a' Here we specialise 'f' at Char; but that is very likely to lead to a specialisation of 'g' at Char. We must do the latter, else the whole point of specialisation is lost. But we do not want to keep iterating to a fixpoint, because in the presence of polymorphic recursion we might generate an infinite number of specialisations. So we use the following heuristic: * Arrange the rec block in dependency order, so far as possible (the occurrence analyser already does this) * Specialise it much like a sequence of lets * Then go through the block a second time, feeding call-info from the RHSs back in the bottom, as it were In effect, the ordering maxmimises the effectiveness of each sweep, and we do just two sweeps. This should catch almost every case of monomorphic recursion -- the exception could be a very knotted-up recursion with multiple cycles tied up together. This plan is implemented in the Rec case of specBindItself. Note [Specialisations already covered] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We obviously don't want to generate two specialisations for the same argument pattern. Wrinkles (SC1) We do the already-covered test in specDefn, not when we generate the CallInfo in mkCallUDs. We used to test in the latter place, but we now iterate the specialiser somewhat, and the Id at the call site might therefore not have all the RULES that we can see in specDefn (SC2) What about two specialisations where the second is an *instance* of the first? It's a bit arbitrary, but here's what we do: * If the existing one is user-specified, via a SPECIALISE pragma, we suppress the further specialisation. * If the existing one is auto-generated, we generate a second RULE for the more specialised version. The latter is important because we don't want the accidental order of calls to determine what specialisations we generate. (SC3) Annoyingly, we /also/ eliminate duplicates in `filterCalls`. See (MP3) in Note [Specialising polymorphic dictionaries] Note [Auto-specialisation and RULES] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider: g :: Num a => a -> a g = ... f :: (Int -> Int) -> Int f w = ... {-# RULE f g = 0 #-} Suppose that auto-specialisation makes a specialised version of g::Int->Int. That version won't appear in the LHS of the RULE for f. So if the specialisation rule fires too early, the rule for f may never fire. It might be possible to add new rules, to "complete" the rewrite system. Thus when adding RULE forall d. g Int d = g_spec also add RULE f g_spec = 0 But that's a bit complicated. For now we ask the programmer's help, by *copying the INLINE activation pragma* to the auto-specialised rule. So if g says {-# NOINLINE[2] g #-}, then the auto-spec rule will also not be active until phase 2. And that's what programmers should jolly well do anyway, even aside from specialisation, to ensure that g doesn't inline too early. This in turn means that the RULE would never fire for a NOINLINE thing so not much point in generating a specialisation at all. Note [Specialisation shape] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ We only specialise a function if it has visible top-level lambdas corresponding to its overloading. E.g. if f :: forall a. Eq a => .... then its body must look like f = /\a. \d. ... Reason: when specialising the body for a call (f ty dexp), we want to substitute dexp for d, and pick up specialised calls in the body of f. We do allow casts, however; see Note [Account for casts in binding]. This doesn't always work. One example I came across was this: newtype Gen a = MkGen{ unGen :: Int -> a } choose :: Eq a => a -> Gen a choose n = MkGen (\r -> n) oneof = choose (1::Int) It's a silly example, but we get choose = /\a. g `cast` co where choose doesn't have any dict arguments. Thus far I have not tried to fix this (wait till there's a real example). Mind you, then 'choose' will be inlined (since RHS is trivial) so it doesn't matter. This comes up with single-method classes class C a where { op :: a -> a } instance C a => C [a] where .... ==> $fCList :: C a => C [a] $fCList = $copList |> (...coercion>...) ....(uses of $fCList at particular types)... So we suppress the WARN if the rhs is trivial. Note [Inline specialisations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here is what we do with the InlinePragma of the original function * Activation/RuleMatchInfo: both inherited from the original function * InlineSpec: inherit from original function * Unfolding: transfer a StableUnfolding iff it is UnfWhen See GHC.Core.Unfold.Make.specUnfolding and its Note [Specialising unfoldings] InlineSpec: you might wonder why we specialise INLINE functions at all. After all they should be inlined, right? Two reasons: * Even INLINE functions are sometimes not inlined, when they aren't applied to interesting arguments. But perhaps the type arguments alone are enough to specialise (even though the args are too boring to trigger inlining), and it's certainly better to call the specialised version. * The RHS of an INLINE function might call another overloaded function, and we'd like to generate a specialised version of that function too. This actually happens a lot. Consider replicateM_ :: (Monad m) => Int -> m a -> m () {-# INLINABLE replicateM_ #-} replicateM_ d x ma = ... The strictness analyser may transform to replicateM_ :: (Monad m) => Int -> m a -> m () {-# INLINE replicateM_ #-} replicateM_ d x ma = case x of I# x' -> $wreplicateM_ d x' ma $wreplicateM_ :: (Monad m) => Int# -> m a -> m () {-# INLINABLE $wreplicateM_ #-} $wreplicateM_ = ... Now an importing module has a specialised call to replicateM_, say (replicateM_ dMonadIO). We certainly want to specialise $wreplicateM_! This particular example had a huge effect on the call to replicateM_ in nofib/shootout/n-body. -} {- ********************************************************************* * * SpecArg, and specHeader * * ********************************************************************* -} -- | An argument that we might want to specialise. -- See Note [Specialising Calls] for the nitty gritty details. data SpecArg = -- | Type arguments that should be specialised, due to appearing -- free in the type of a 'SpecDict'. SpecType Type -- | Type arguments that should remain polymorphic. | UnspecType -- | Dictionaries that should be specialised. mkCallUDs ensures -- that only "interesting" dictionary arguments get a SpecDict; -- see Note [Interesting dictionary arguments] | SpecDict DictExpr -- | Value arguments that should not be specialised. | UnspecArg instance Outputable SpecArg where ppr :: SpecArg -> SDoc ppr (SpecType Kind t) = String -> SDoc forall doc. IsLine doc => String -> doc text String "SpecType" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> Kind -> SDoc forall a. Outputable a => a -> SDoc ppr Kind t ppr SpecArg UnspecType = String -> SDoc forall doc. IsLine doc => String -> doc text String "UnspecType" ppr (SpecDict OutExpr d) = String -> SDoc forall doc. IsLine doc => String -> doc text String "SpecDict" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> OutExpr -> SDoc forall a. Outputable a => a -> SDoc ppr OutExpr d ppr SpecArg UnspecArg = String -> SDoc forall doc. IsLine doc => String -> doc text String "UnspecArg" specArgFreeIds :: SpecArg -> IdSet specArgFreeIds :: SpecArg -> IdSet specArgFreeIds (SpecType {}) = IdSet emptyVarSet specArgFreeIds (SpecDict OutExpr dx) = OutExpr -> IdSet exprFreeIds OutExpr dx specArgFreeIds SpecArg UnspecType = IdSet emptyVarSet specArgFreeIds SpecArg UnspecArg = IdSet emptyVarSet specArgFreeVars :: SpecArg -> VarSet specArgFreeVars :: SpecArg -> IdSet specArgFreeVars (SpecType Kind ty) = Kind -> IdSet tyCoVarsOfType Kind ty specArgFreeVars (SpecDict OutExpr dx) = OutExpr -> IdSet exprFreeVars OutExpr dx specArgFreeVars SpecArg UnspecType = IdSet emptyVarSet specArgFreeVars SpecArg UnspecArg = IdSet emptyVarSet isSpecDict :: SpecArg -> Bool isSpecDict :: SpecArg -> Bool isSpecDict (SpecDict {}) = Bool True isSpecDict SpecArg _ = Bool False -- | Given binders from an original function 'f', and the 'SpecArg's -- corresponding to its usage, compute everything necessary to build -- a specialisation. -- -- We will use the running example from Note [Specialising Calls]: -- -- f :: forall a b c. Int -> Eq a => Show b => c -> Blah -- f @a @b @c i dEqA dShowB x = blah -- -- Suppose we decide to specialise it at the following pattern: -- -- [ SpecType T1, SpecType T2, UnspecType, UnspecArg -- , SpecDict dEqT1, SpecDict ($dfShow dShowT2), UnspecArg ] -- -- We'd eventually like to build the RULE -- -- RULE "SPEC f @T1 @T2 _" -- forall (@c :: Type) (i :: Int) (d1 :: Eq T1) (d2 :: Show T2). -- f @T1 @T2 @c i d1 d2 = $sf @c i -- -- and the specialisation '$sf' -- -- $sf :: forall c. Int -> c -> Blah -- $sf = SUBST[a :-> T1, b :-> T2, dEqA :-> dEqT1, dShowB :-> dShow1] (\@c i x -> blah) -- -- where dShow1 is a floated binding created by bindAuxiliaryDict. -- -- The cases for 'specHeader' below are presented in the same order as this -- running example. The result of 'specHeader' for this example is as follows: -- -- ( -- Returned arguments -- env + [a :-> T1, b :-> T2, dEqA :-> dEqT1, dShowB :-> dShow1] -- , [x] -- -- -- RULE helpers -- , [c, i, d1, d2] -- , [T1, T2, c, i, d1, d2] -- -- -- Specialised function helpers -- , [c, i, x] -- , [dShow1 = $dfShow dShowT2] -- , [T1, T2, c, i, dEqT1, dShow1] -- ) specHeader :: SpecEnv -> [InBndr] -- The binders from the original function 'f' -> [SpecArg] -- From the CallInfo -> SpecM ( Bool -- True <=> some useful specialisation happened -- Not the same as any (isSpecDict args) because -- the args might be longer than bndrs -- Returned arguments , SpecEnv -- Substitution to apply to the body of 'f' , [OutBndr] -- Leftover binders from the original function 'f' -- that don’t have a corresponding SpecArg -- RULE helpers , [OutBndr] -- Binders for the RULE , [OutExpr] -- Args for the LHS of the rule -- Specialised function helpers , [OutBndr] -- Binders for $sf , [DictBind] -- Auxiliary dictionary bindings , [OutExpr] -- Specialised arguments for unfolding -- Same length as "Args for LHS of rule" ) -- We want to specialise on type 'T1', and so we must construct a substitution -- 'a->T1', as well as a LHS argument for the resulting RULE and unfolding -- details. specHeader :: SpecEnv -> [Id] -> [SpecArg] -> SpecM (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) specHeader SpecEnv env (Id bndr : [Id] bndrs) (SpecType Kind ty : [SpecArg] args) = do { -- Find qvars, the type variables to add to the binders for the rule -- Namely those free in `ty` that aren't in scope -- See (MP2) in Note [Specialising polymorphic dictionaries] let in_scope :: InScopeSet in_scope = Subst -> InScopeSet Core.substInScopeSet (SpecEnv -> Subst se_subst SpecEnv env) qvars :: [Id] qvars = [Id] -> [Id] scopedSort ([Id] -> [Id]) -> [Id] -> [Id] forall a b. (a -> b) -> a -> b $ (Id -> Bool) -> [Id] -> [Id] forall a. (a -> Bool) -> [a] -> [a] filterOut (Id -> InScopeSet -> Bool `elemInScopeSet` InScopeSet in_scope) ([Id] -> [Id]) -> [Id] -> [Id] forall a b. (a -> b) -> a -> b $ Kind -> [Id] tyCoVarsOfTypeList Kind ty (SpecEnv env1, [Id] qvars') = SpecEnv -> [Id] -> (SpecEnv, [Id]) forall (f :: * -> *). Traversable f => SpecEnv -> f Id -> (SpecEnv, f Id) substBndrs SpecEnv env [Id] qvars ty' :: Kind ty' = SpecEnv -> Kind -> Kind substTy SpecEnv env1 Kind ty env2 :: SpecEnv env2 = SpecEnv -> Id -> Kind -> SpecEnv extendTvSubst SpecEnv env1 Id bndr Kind ty' ; (useful, env3, leftover_bndrs, rule_bs, rule_es, bs', dx, spec_args) <- SpecEnv -> [Id] -> [SpecArg] -> SpecM (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) specHeader SpecEnv env2 [Id] bndrs [SpecArg] args ; pure ( useful , env3 , leftover_bndrs , qvars' ++ rule_bs , Type ty' : rule_es , qvars' ++ bs' , dx , Type ty' : spec_args ) } -- Next we have a type that we don't want to specialise. We need to perform -- a substitution on it (in case the type refers to 'a'). Additionally, we need -- to produce a binder, LHS argument and RHS argument for the resulting rule, -- /and/ a binder for the specialised body. specHeader SpecEnv env (Id bndr : [Id] bndrs) (SpecArg UnspecType : [SpecArg] args) = do { let (SpecEnv env', Id bndr') = SpecEnv -> Id -> (SpecEnv, Id) substBndr SpecEnv env Id bndr ; (useful, env'', leftover_bndrs, rule_bs, rule_es, bs', dx, spec_args) <- SpecEnv -> [Id] -> [SpecArg] -> SpecM (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) specHeader SpecEnv env' [Id] bndrs [SpecArg] args ; pure ( useful , env'' , leftover_bndrs , bndr' : rule_bs , varToCoreExpr bndr' : rule_es , bndr' : bs' , dx , varToCoreExpr bndr' : spec_args ) } -- Next we want to specialise the 'Eq a' dict away. We need to construct -- a wildcard binder to match the dictionary (See Note [Specialising Calls] for -- the nitty-gritty), as a LHS rule and unfolding details. specHeader SpecEnv env (Id bndr : [Id] bndrs) (SpecDict OutExpr d : [SpecArg] args) | Bool -> Bool not (Id -> Bool isDeadBinder Id bndr) , (Id -> Bool) -> IdSet -> Bool allVarSet (Id -> InScopeSet -> Bool `elemInScopeSet` InScopeSet in_scope) (OutExpr -> IdSet exprFreeVars OutExpr d) -- See Note [Weird special case for SpecDict] = do { (env1, bndr') <- SpecEnv -> Id -> UniqSM (SpecEnv, Id) newDictBndr SpecEnv env Id bndr -- See Note [Zap occ info in rule binders] ; let (env2, dx_bind, spec_dict) = bindAuxiliaryDict env1 bndr bndr' d ; (_, env3, leftover_bndrs, rule_bs, rule_es, bs', dx, spec_args) <- specHeader env2 bndrs args ; pure ( True -- Ha! A useful specialisation! , env3 , leftover_bndrs -- See Note [Evidence foralls] , exprFreeIdsList (varToCoreExpr bndr') ++ rule_bs , varToCoreExpr bndr' : rule_es , bs' , maybeToList dx_bind ++ dx , spec_dict : spec_args ) } where in_scope :: InScopeSet in_scope = Subst -> InScopeSet Core.substInScopeSet (SpecEnv -> Subst se_subst SpecEnv env) -- Finally, we don't want to specialise on this argument 'i': -- - It's an UnSpecArg, or -- - It's a dead dictionary -- We need to produce a binder, LHS and RHS argument for the RULE, and -- a binder for the specialised body. -- -- NB: Calls to 'specHeader' will trim off any trailing 'UnspecArg's, which is -- why 'i' doesn't appear in our RULE above. But we have no guarantee that -- there aren't 'UnspecArg's which come /before/ all of the dictionaries, so -- this case must be here. specHeader SpecEnv env (Id bndr : [Id] bndrs) (SpecArg _ : [SpecArg] args) -- The "_" can be UnSpecArg, or SpecDict where the bndr is dead = do { -- see Note [Zap occ info in rule binders] let (SpecEnv env', Id bndr') = SpecEnv -> Id -> (SpecEnv, Id) substBndr SpecEnv env (Id -> Id zapIdOccInfo Id bndr) ; (useful, env'', leftover_bndrs, rule_bs, rule_es, bs', dx, spec_args) <- SpecEnv -> [Id] -> [SpecArg] -> SpecM (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) specHeader SpecEnv env' [Id] bndrs [SpecArg] args ; let bndr_ty = Id -> Kind idType Id bndr' -- See Note [Drop dead args from specialisations] -- C.f. GHC.Core.Opt.WorkWrap.Utils.mk_absent_let (mb_spec_bndr, spec_arg) | isDeadBinder bndr , Just lit_expr <- mkLitRubbish bndr_ty = (Nothing, lit_expr) | otherwise = (Just bndr', varToCoreExpr bndr') ; pure ( useful , env'' , leftover_bndrs , bndr' : rule_bs , varToCoreExpr bndr' : rule_es , case mb_spec_bndr of Just Id b' -> Id b' Id -> [Id] -> [Id] forall a. a -> [a] -> [a] : [Id] bs' Maybe Id Nothing -> [Id] bs' , dx , spec_arg : spec_args ) } -- If we run out of binders, stop immediately -- See Note [Specialisation Must Preserve Sharing] specHeader SpecEnv env [] [SpecArg] _ = (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) -> SpecM (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) forall a. a -> UniqSM a forall (f :: * -> *) a. Applicative f => a -> f a pure (Bool False, SpecEnv env, [], [], [], [], [], []) -- Return all remaining binders from the original function. These have the -- invariant that they should all correspond to unspecialised arguments, so -- it's safe to stop processing at this point. specHeader SpecEnv env [Id] bndrs [] = (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) -> SpecM (Bool, SpecEnv, [Id], [Id], [OutExpr], [Id], [DictBind], [OutExpr]) forall a. a -> UniqSM a forall (f :: * -> *) a. Applicative f => a -> f a pure (Bool False, SpecEnv env', [Id] bndrs', [], [], [], [], []) where (SpecEnv env', [Id] bndrs') = SpecEnv -> [Id] -> (SpecEnv, [Id]) forall (f :: * -> *). Traversable f => SpecEnv -> f Id -> (SpecEnv, f Id) substBndrs SpecEnv env [Id] bndrs -- | Binds a dictionary argument to a fresh name, to preserve sharing bindAuxiliaryDict :: SpecEnv -> InId -> OutId -> OutExpr -- Original dict binder, and the witnessing expression -> ( SpecEnv -- Substitutes for orig_dict_id , Maybe DictBind -- Auxiliary dict binding, if any , OutExpr) -- Witnessing expression (always trivial) bindAuxiliaryDict :: SpecEnv -> Id -> Id -> OutExpr -> (SpecEnv, Maybe DictBind, OutExpr) bindAuxiliaryDict env :: SpecEnv env@(SE { se_subst :: SpecEnv -> Subst se_subst = Subst subst }) Id orig_dict_id Id fresh_dict_id OutExpr dict_expr -- If the dictionary argument is trivial, -- don’t bother creating a new dict binding; just substitute | OutExpr -> Bool exprIsTrivial OutExpr dict_expr = let env' :: SpecEnv env' = SpecEnv env { se_subst = Core.extendSubst subst orig_dict_id dict_expr } in -- pprTrace "bindAuxiliaryDict:trivial" (ppr orig_dict_id <+> ppr dict_id) $ (SpecEnv env', Maybe DictBind forall a. Maybe a Nothing, OutExpr dict_expr) | Bool otherwise -- Non-trivial dictionary arg; make an auxiliary binding = let fresh_dict_id' :: Id fresh_dict_id' = Id fresh_dict_id Id -> OutExpr -> Id `addDictUnfolding` OutExpr dict_expr dict_bind :: DictBind dict_bind = InBind -> DictBind mkDB (Id -> OutExpr -> InBind forall b. b -> Expr b -> Bind b NonRec Id fresh_dict_id' OutExpr dict_expr) env' :: SpecEnv env' = SpecEnv env { se_subst = Core.extendSubst subst orig_dict_id (Var fresh_dict_id') `Core.extendSubstInScope` fresh_dict_id' } -- Ensure the new unfolding is in the in-scope set in -- pprTrace "bindAuxiliaryDict:non-trivial" (ppr orig_dict_id <+> ppr fresh_dict_id') $ (SpecEnv env', DictBind -> Maybe DictBind forall a. a -> Maybe a Just DictBind dict_bind, Id -> OutExpr forall b. Id -> Expr b Var Id fresh_dict_id') addDictUnfolding :: Id -> CoreExpr -> Id -- Add unfolding for freshly-bound Ids: see Note [Make the new dictionaries interesting] -- and Note [Specialisation modulo dictionary selectors] addDictUnfolding :: Id -> OutExpr -> Id addDictUnfolding Id id OutExpr rhs = Id id Id -> Unfolding -> Id `setIdUnfolding` UnfoldingOpts -> OutExpr -> Unfolding mkSimpleUnfolding UnfoldingOpts defaultUnfoldingOpts OutExpr rhs {- Note [Make the new dictionaries interesting] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Important! We're going to substitute dx_id1 for d and we want it to look "interesting", else we won't gather *any* consequential calls. E.g. f d = ...g d.... If we specialise f for a call (f (dfun dNumInt)), we'll get a consequent call (g d') with an auxiliary definition d' = df dNumInt We want that consequent call to look interesting; so we add an unfolding in the dictionary Id. -} {- ********************************************************************* * * UsageDetails and suchlike * * ********************************************************************* -} data UsageDetails = MkUD { UsageDetails -> FloatedDictBinds ud_binds :: !FloatedDictBinds , UsageDetails -> CallDetails ud_calls :: !CallDetails } -- INVARIANT: suppose bs = fdb_bndrs ud_binds -- Then 'calls' may *mention* 'bs', -- but there should be no calls *for* bs data FloatedDictBinds -- See Note [Floated dictionary bindings] = FDB { FloatedDictBinds -> OrdList DictBind fdb_binds :: !(OrdList DictBind) -- The order is important; -- in ds1 `appOL` ds2, bindings in ds2 can depend on those in ds1 , FloatedDictBinds -> IdSet fdb_bndrs :: !IdSet } -- ^ The binders of 'fdb_binds'. -- Caches a superset of the expression -- `mkVarSet (bindersOfDictBinds fdb_binds))` -- for later addition to an InScopeSet -- | A 'DictBind' is a binding along with a cached set containing its free -- variables (both type variables and dictionaries). We need this set -- in splitDictBinds, when filtering bindings to decide which are -- captured by a binder data DictBind = DB { DictBind -> InBind db_bind :: CoreBind, DictBind -> IdSet db_fvs :: VarSet } bindersOfDictBind :: DictBind -> [Id] bindersOfDictBind :: DictBind -> [Id] bindersOfDictBind = InBind -> [Id] forall b. Bind b -> [b] bindersOf (InBind -> [Id]) -> (DictBind -> InBind) -> DictBind -> [Id] forall b c a. (b -> c) -> (a -> b) -> a -> c . DictBind -> InBind db_bind bindersOfDictBinds :: Foldable f => f DictBind -> [Id] bindersOfDictBinds :: forall (f :: * -> *). Foldable f => f DictBind -> [Id] bindersOfDictBinds = CoreProgram -> [Id] forall b. [Bind b] -> [b] bindersOfBinds (CoreProgram -> [Id]) -> (f DictBind -> CoreProgram) -> f DictBind -> [Id] forall b c a. (b -> c) -> (a -> b) -> a -> c . (DictBind -> CoreProgram -> CoreProgram) -> CoreProgram -> f DictBind -> CoreProgram forall a b. (a -> b -> b) -> b -> f a -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr ((:) (InBind -> CoreProgram -> CoreProgram) -> (DictBind -> InBind) -> DictBind -> CoreProgram -> CoreProgram forall b c a. (b -> c) -> (a -> b) -> a -> c . DictBind -> InBind db_bind) [] {- Note [Floated dictionary bindings] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We float out dictionary bindings for the reasons described under "Dictionary floating" above. But not /just/ dictionary bindings. Consider f :: Eq a => blah f a d = rhs $c== :: T -> T -> Bool $c== x y = ... $df :: Eq T $df = Eq $c== ... gurgle = ...(f @T $df)... We gather the call info for (f @T $df), and we don't want to drop it when we come across the binding for $df. So we add $df to the floats and continue. But then we have to add $c== to the floats, and so on. These all float above the binding for 'f', and now we can successfully specialise 'f'. So the DictBinds in (ud_binds :: OrdList DictBind) may contain non-dictionary bindings too. Note [Specialising polymorphic dictionaries] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Note June 2023: This has proved to be quite a tricky optimisation to get right see (#23469, #23109, #21229, #23445) so it is now guarded by a flag `-fpolymorphic-specialisation`. Consider class M a where { foo :: a -> Int } instance M (ST s) where ... -- dMST :: forall s. M (ST s) wimwam :: forall a. M a => a -> Int wimwam = /\a \(d::M a). body f :: ST s -> Int f = /\s \(x::ST s). wimwam @(ST s) (dMST @s) dx + 1 We'd like to specialise wimwam at (ST s), thus $swimwam :: forall s. ST s -> Int $swimwam = /\s. body[ST s/a, (dMST @s)/d] RULE forall s (d :: M (ST s)). wimwam @(ST s) d = $swimwam @s Here are the moving parts: (MP1) We must /not/ dump the CallInfo CIS wimwam (CI { ci_key = [@(ST s), dMST @s] , ci_fvs = {dMST} }) when we come to the /\s. Instead, we simply let it continue to float upwards. Hence ci_fvs is an IdSet, listing the /Ids/ that are free in the call, but not the /TyVars/. Hence using specArgFreeIds in singleCall. NB to be fully kosher we should explicitly quantifying the CallInfo over 's', but we don't bother. This would matter if there was an enclosing binding of the same 's', which I don't expect to happen. (MP2) When we come to specialise the call, we must remember to quantify over 's'. That is done in the SpecType case of specHeader, where we add 's' (called qvars) to the binders of the RULE and the specialised function. (MP3) If we have f :: forall m. Monoid m => blah, and two calls (f @(Endo b) (d1 :: Monoid (Endo b)) (f @(Endo (c->c)) (d2 :: Monoid (Endo (c->c))) we want to generate a specialisation only for the first. The second is just a substitution instance of the first, with no greater specialisation. Hence the use of `removeDupCalls` in `filterCalls`. You might wonder if `d2` might be more specialised than `d1`; but no. This `removeDupCalls` thing is at the definition site of `f`, and both `d1` and `d2` are in scope. So `d1` is simply more polymorphic than `d2`, but is just as specialised. This distinction is sadly lost once we build a RULE, so `alreadyCovered` can't be so clever. E.g if we have an existing RULE forall @a (d1:Ord Int) (d2: Eq a). f @a @Int d1 d2 = ... and a putative new rule forall (d1:Ord Int) (d2: Eq Int). f @Int @Int d1 d2 = ... we /don't/ want the existing rule to subsume the new one. So we sadly put up with having two rather different places where we eliminate duplicates: `alreadyCovered` and `removeDupCalls`. All this arose in #13873, in the unexpected form that a SPECIALISE pragma made the program slower! The reason was that the specialised function $sinsertWith arising from the pragma looked rather like `f` above, and failed to specialise a call in its body like wimwam. Without the pragma, the original call to `insertWith` was completely monomorpic, and specialised in one go. Wrinkles. * See Note [Weird special case for SpecDict] * With -XOverlappingInstances you might worry about this: class C a where ... instance C (Maybe Int) where ... -- $df1 :: C (Maybe Int) instance C (Maybe a) where ... -- $df2 :: forall a. C (Maybe a) f :: C a => blah f = rhs g = /\a. ...(f @(Maybe a) ($df2 a))... h = ...f @(Maybe Int) $df1 There are two calls to f, but with different evidence. This patch will combine them into one. But it's OK: this code will never arise unless you use -XIncoherentInstances. Even with -XOverlappingInstances, GHC tries hard to keep dictionaries as singleton types. But that goes out of the window with -XIncoherentInstances -- and that is true even with ordianry type-class specialisation (at least if any inlining has taken place). GHC makes very few guarantees when you use -XIncoherentInstances, and its not worth crippling the normal case for the incoherent corner. (The best thing might be to switch off specialisation altogether if incoherence is involved... but incoherence is a property of an instance, not a class, so it's a hard test to make.) But see Note [Specialisation and overlapping instances]. Note [Weird special case for SpecDict] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we are trying to specialise for this this call: $wsplit @T (mkD @k @(a::k) :: C T) where mkD :: forall k (a::k). C T is a top-level dictionary-former. This actually happened in #22459, because of (MP1) of Note [Specialising polymorphic dictionaries]. How can we specialise $wsplit? We might try RULE "SPEC" forall (d :: C T). $wsplit @T d = $s$wsplit but then in the body of $s$wsplit what will we use for the dictionary evidence? We can't use (mkD @k @(a::k)) because k and a aren't in scope. We could zap `k` to (Any @Type) and `a` to (Any @(Any @Type)), but that is a lot of hard work for a very strange case. So we simply refrain from specialising in this case; hence the guard allVarSet (`elemInScopeSet` in_scope) (exprFreeVars d) in the SpecDict cased of specHeader. How did this strange polymorphic mkD arise in the first place? From GHC.Core.Opt.Utils.abstractFloats, which was abstracting over too many type variables. But that too is now fixed; see Note [Which type variables to abstract over] in that module. -} instance Outputable DictBind where ppr :: DictBind -> SDoc ppr (DB { db_bind :: DictBind -> InBind db_bind = InBind bind, db_fvs :: DictBind -> IdSet db_fvs = IdSet fvs }) = String -> SDoc forall doc. IsLine doc => String -> doc text String "DB" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc -> SDoc forall doc. IsLine doc => doc -> doc braces ([SDoc] -> SDoc forall doc. IsLine doc => [doc] -> doc sep [ String -> SDoc forall doc. IsLine doc => String -> doc text String "fvs: " SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> IdSet -> SDoc forall a. Outputable a => a -> SDoc ppr IdSet fvs , String -> SDoc forall doc. IsLine doc => String -> doc text String "bind:" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> InBind -> SDoc forall a. Outputable a => a -> SDoc ppr InBind bind ]) instance Outputable UsageDetails where ppr :: UsageDetails -> SDoc ppr (MkUD { ud_binds :: UsageDetails -> FloatedDictBinds ud_binds = FloatedDictBinds dbs, ud_calls :: UsageDetails -> CallDetails ud_calls = CallDetails calls }) = String -> SDoc forall doc. IsLine doc => String -> doc text String "MkUD" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc -> SDoc forall doc. IsLine doc => doc -> doc braces ([SDoc] -> SDoc forall doc. IsLine doc => [doc] -> doc sep (SDoc -> [SDoc] -> [SDoc] forall doc. IsLine doc => doc -> [doc] -> [doc] punctuate SDoc forall doc. IsLine doc => doc comma [String -> SDoc forall doc. IsLine doc => String -> doc text String "binds" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc forall doc. IsLine doc => doc equals SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> FloatedDictBinds -> SDoc forall a. Outputable a => a -> SDoc ppr FloatedDictBinds dbs, String -> SDoc forall doc. IsLine doc => String -> doc text String "calls" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> SDoc forall doc. IsLine doc => doc equals SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> CallDetails -> SDoc forall a. Outputable a => a -> SDoc ppr CallDetails calls])) instance Outputable FloatedDictBinds where ppr :: FloatedDictBinds -> SDoc ppr (FDB { fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind binds }) = OrdList DictBind -> SDoc forall a. Outputable a => a -> SDoc ppr OrdList DictBind binds emptyUDs :: UsageDetails emptyUDs :: UsageDetails emptyUDs = MkUD { ud_binds :: FloatedDictBinds ud_binds = FloatedDictBinds emptyFDBs, ud_calls :: CallDetails ud_calls = CallDetails forall a. DVarEnv a emptyDVarEnv } emptyFDBs :: FloatedDictBinds emptyFDBs :: FloatedDictBinds emptyFDBs = FDB { fdb_binds :: OrdList DictBind fdb_binds = OrdList DictBind forall a. OrdList a nilOL, fdb_bndrs :: IdSet fdb_bndrs = IdSet emptyVarSet } ------------------------------------------------------------ type CallDetails = DIdEnv CallInfoSet -- The order of specialized binds and rules depends on how we linearize -- CallDetails, so to get determinism we must use a deterministic set here. -- See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM data CallInfoSet = CIS Id (Bag CallInfo) -- The list of types and dictionaries is guaranteed to -- match the type of f -- The Bag may contain duplicate calls (i.e. f @T and another f @T) -- These dups are eliminated by alreadyCovered in specCalls data CallInfo = CI { CallInfo -> [SpecArg] ci_key :: [SpecArg] -- Arguments of the call -- See Note [The (CI-KEY) invariant] , CallInfo -> IdSet ci_fvs :: IdSet -- Free Ids of the ci_key call -- /not/ including the main id itself, of course -- NB: excluding tyvars: -- See Note [Specialising polymorphic dictionaries] } {- Note [The (CI-KEY) invariant] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Invariant (CI-KEY): In the `ci_key :: [SpecArg]` field of `CallInfo`, * The list is non-empty * The least element is always a `SpecDict` In this way the RULE has as few args as possible, which broadens its applicability, since rules only fire when saturated. -} type DictExpr = CoreExpr ciSetFilter :: (CallInfo -> Bool) -> CallInfoSet -> CallInfoSet ciSetFilter :: (CallInfo -> Bool) -> CallInfoSet -> CallInfoSet ciSetFilter CallInfo -> Bool p (CIS Id id Bag CallInfo a) = Id -> Bag CallInfo -> CallInfoSet CIS Id id ((CallInfo -> Bool) -> Bag CallInfo -> Bag CallInfo forall a. (a -> Bool) -> Bag a -> Bag a filterBag CallInfo -> Bool p Bag CallInfo a) instance Outputable CallInfoSet where ppr :: CallInfoSet -> SDoc ppr (CIS Id fn Bag CallInfo map) = SDoc -> Int -> SDoc -> SDoc hang (String -> SDoc forall doc. IsLine doc => String -> doc text String "CIS" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id fn) Int 2 (Bag CallInfo -> SDoc forall a. Outputable a => a -> SDoc ppr Bag CallInfo map) pprCallInfo :: Id -> CallInfo -> SDoc pprCallInfo :: Id -> CallInfo -> SDoc pprCallInfo Id fn (CI { ci_key :: CallInfo -> [SpecArg] ci_key = [SpecArg] key }) = Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id fn SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <+> [SpecArg] -> SDoc forall a. Outputable a => a -> SDoc ppr [SpecArg] key instance Outputable CallInfo where ppr :: CallInfo -> SDoc ppr (CI { ci_key :: CallInfo -> [SpecArg] ci_key = [SpecArg] key, ci_fvs :: CallInfo -> IdSet ci_fvs = IdSet _fvs }) = String -> SDoc forall doc. IsLine doc => String -> doc text String "CI" SDoc -> SDoc -> SDoc forall doc. IsLine doc => doc -> doc -> doc <> SDoc -> SDoc forall doc. IsLine doc => doc -> doc braces ([SDoc] -> SDoc forall doc. IsLine doc => [doc] -> doc sep ((SpecArg -> SDoc) -> [SpecArg] -> [SDoc] forall a b. (a -> b) -> [a] -> [b] map SpecArg -> SDoc forall a. Outputable a => a -> SDoc ppr [SpecArg] key)) unionCalls :: CallDetails -> CallDetails -> CallDetails unionCalls :: CallDetails -> CallDetails -> CallDetails unionCalls CallDetails c1 CallDetails c2 = (CallInfoSet -> CallInfoSet -> CallInfoSet) -> CallDetails -> CallDetails -> CallDetails forall a. (a -> a -> a) -> DVarEnv a -> DVarEnv a -> DVarEnv a plusDVarEnv_C CallInfoSet -> CallInfoSet -> CallInfoSet unionCallInfoSet CallDetails c1 CallDetails c2 unionCallInfoSet :: CallInfoSet -> CallInfoSet -> CallInfoSet unionCallInfoSet :: CallInfoSet -> CallInfoSet -> CallInfoSet unionCallInfoSet (CIS Id f Bag CallInfo calls1) (CIS Id _ Bag CallInfo calls2) = Id -> Bag CallInfo -> CallInfoSet CIS Id f (Bag CallInfo calls1 Bag CallInfo -> Bag CallInfo -> Bag CallInfo forall a. Bag a -> Bag a -> Bag a `unionBags` Bag CallInfo calls2) callDetailsFVs :: CallDetails -> VarSet callDetailsFVs :: CallDetails -> IdSet callDetailsFVs CallDetails calls = (CallInfoSet -> IdSet -> IdSet) -> IdSet -> CallDetails -> IdSet forall {k} elt a (key :: k). (elt -> a -> a) -> a -> UniqDFM key elt -> a nonDetStrictFoldUDFM (IdSet -> IdSet -> IdSet unionVarSet (IdSet -> IdSet -> IdSet) -> (CallInfoSet -> IdSet) -> CallInfoSet -> IdSet -> IdSet forall b c a. (b -> c) -> (a -> b) -> a -> c . CallInfoSet -> IdSet callInfoFVs) IdSet emptyVarSet CallDetails calls -- It's OK to use nonDetStrictFoldUDFM here because we forget the ordering -- immediately by converting to a nondeterministic set. callInfoFVs :: CallInfoSet -> VarSet callInfoFVs :: CallInfoSet -> IdSet callInfoFVs (CIS Id _ Bag CallInfo call_info) = (CallInfo -> IdSet -> IdSet) -> IdSet -> Bag CallInfo -> IdSet forall a b. (a -> b -> b) -> b -> Bag a -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr (\(CI { ci_fvs :: CallInfo -> IdSet ci_fvs = IdSet fv }) IdSet vs -> IdSet -> IdSet -> IdSet unionVarSet IdSet fv IdSet vs) IdSet emptyVarSet Bag CallInfo call_info getTheta :: [PiTyBinder] -> [PredType] getTheta :: [PiTyBinder] -> [Kind] getTheta = (PiTyBinder -> Kind) -> [PiTyBinder] -> [Kind] forall a b. (a -> b) -> [a] -> [b] forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b fmap PiTyBinder -> Kind piTyBinderType ([PiTyBinder] -> [Kind]) -> ([PiTyBinder] -> [PiTyBinder]) -> [PiTyBinder] -> [Kind] forall b c a. (b -> c) -> (a -> b) -> a -> c . (PiTyBinder -> Bool) -> [PiTyBinder] -> [PiTyBinder] forall a. (a -> Bool) -> [a] -> [a] filter PiTyBinder -> Bool isInvisiblePiTyBinder ([PiTyBinder] -> [PiTyBinder]) -> ([PiTyBinder] -> [PiTyBinder]) -> [PiTyBinder] -> [PiTyBinder] forall b c a. (b -> c) -> (a -> b) -> a -> c . (PiTyBinder -> Bool) -> [PiTyBinder] -> [PiTyBinder] forall a. (a -> Bool) -> [a] -> [a] filter PiTyBinder -> Bool isAnonPiTyBinder ------------------------------------------------------------ singleCall :: SpecEnv -> Id -> [SpecArg] -> UsageDetails singleCall :: SpecEnv -> Id -> [SpecArg] -> UsageDetails singleCall SpecEnv spec_env Id id [SpecArg] args = MkUD {ud_binds :: FloatedDictBinds ud_binds = FloatedDictBinds emptyFDBs, ud_calls :: CallDetails ud_calls = Id -> CallInfoSet -> CallDetails forall a. Id -> a -> DVarEnv a unitDVarEnv Id id (CallInfoSet -> CallDetails) -> CallInfoSet -> CallDetails forall a b. (a -> b) -> a -> b $ Id -> Bag CallInfo -> CallInfoSet CIS Id id (Bag CallInfo -> CallInfoSet) -> Bag CallInfo -> CallInfoSet forall a b. (a -> b) -> a -> b $ CallInfo -> Bag CallInfo forall a. a -> Bag a unitBag (CI { ci_key :: [SpecArg] ci_key = [SpecArg] args , ci_fvs :: IdSet ci_fvs = IdSet call_fvs }) } where call_fvs :: IdSet call_fvs = (SpecArg -> IdSet -> IdSet) -> IdSet -> [SpecArg] -> IdSet forall a b. (a -> b -> b) -> b -> [a] -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr (IdSet -> IdSet -> IdSet unionVarSet (IdSet -> IdSet -> IdSet) -> (SpecArg -> IdSet) -> SpecArg -> IdSet -> IdSet forall b c a. (b -> c) -> (a -> b) -> a -> c . SpecArg -> IdSet free_var_fn) IdSet emptyVarSet [SpecArg] args free_var_fn :: SpecArg -> IdSet free_var_fn = if GeneralFlag -> DynFlags -> Bool gopt GeneralFlag Opt_PolymorphicSpecialisation (SpecEnv -> DynFlags se_dflags SpecEnv spec_env) then SpecArg -> IdSet specArgFreeIds else SpecArg -> IdSet specArgFreeVars -- specArgFreeIds: we specifically look for free Ids, not TyVars -- see (MP1) in Note [Specialising polymorphic dictionaries] -- -- We don't include the 'id' itself. mkCallUDs :: SpecEnv -> OutExpr -> [OutExpr] -> UsageDetails mkCallUDs :: SpecEnv -> OutExpr -> [OutExpr] -> UsageDetails mkCallUDs SpecEnv env OutExpr fun [OutExpr] args | ([CoreTickish] _, Var Id f) <- (CoreTickish -> Bool) -> OutExpr -> ([CoreTickish], OutExpr) forall b. (CoreTickish -> Bool) -> Expr b -> ([CoreTickish], Expr b) stripTicksTop CoreTickish -> Bool forall (pass :: TickishPass). GenTickish pass -> Bool tickishFloatable OutExpr fun -- See Note [Ticks on applications] = -- pprTraceWith "mkCallUDs" (\res -> vcat [ ppr f, ppr args, ppr res ]) $ SpecEnv -> Id -> [OutExpr] -> UsageDetails mkCallUDs' SpecEnv env Id f [OutExpr] args | Bool otherwise = UsageDetails emptyUDs mkCallUDs' :: SpecEnv -> Id -> [OutExpr] -> UsageDetails mkCallUDs' :: SpecEnv -> Id -> [OutExpr] -> UsageDetails mkCallUDs' SpecEnv env Id f [OutExpr] args | SpecEnv -> Id -> Bool wantCallsFor SpecEnv env Id f -- We want it, and... , Bool -> Bool not ([SpecArg] -> Bool forall a. [a] -> Bool forall (t :: * -> *) a. Foldable t => t a -> Bool null [SpecArg] ci_key) -- this call site has a useful specialisation = -- pprTrace "mkCallUDs: keeping" _trace_doc SpecEnv -> Id -> [SpecArg] -> UsageDetails singleCall SpecEnv env Id f [SpecArg] ci_key | Bool otherwise -- See also Note [Specialisations already covered] = -- pprTrace "mkCallUDs: discarding" _trace_doc UsageDetails emptyUDs where _trace_doc :: SDoc _trace_doc = [SDoc] -> SDoc forall doc. IsDoc doc => [doc] -> doc vcat [Id -> SDoc forall a. Outputable a => a -> SDoc ppr Id f, [OutExpr] -> SDoc forall a. Outputable a => a -> SDoc ppr [OutExpr] args, [SpecArg] -> SDoc forall a. Outputable a => a -> SDoc ppr [SpecArg] ci_key] pis :: [PiTyBinder] pis = ([PiTyBinder], Kind) -> [PiTyBinder] forall a b. (a, b) -> a fst (([PiTyBinder], Kind) -> [PiTyBinder]) -> ([PiTyBinder], Kind) -> [PiTyBinder] forall a b. (a -> b) -> a -> b $ Kind -> ([PiTyBinder], Kind) splitPiTys (Kind -> ([PiTyBinder], Kind)) -> Kind -> ([PiTyBinder], Kind) forall a b. (a -> b) -> a -> b $ Id -> Kind idType Id f constrained_tyvars :: IdSet constrained_tyvars = [Kind] -> IdSet tyCoVarsOfTypes ([Kind] -> IdSet) -> [Kind] -> IdSet forall a b. (a -> b) -> a -> b $ [PiTyBinder] -> [Kind] getTheta [PiTyBinder] pis ci_key :: [SpecArg] ci_key :: [SpecArg] ci_key = (SpecArg -> Bool) -> [SpecArg] -> [SpecArg] forall a. (a -> Bool) -> [a] -> [a] dropWhileEndLE (Bool -> Bool not (Bool -> Bool) -> (SpecArg -> Bool) -> SpecArg -> Bool forall b c a. (b -> c) -> (a -> b) -> a -> c . SpecArg -> Bool isSpecDict) ([SpecArg] -> [SpecArg]) -> [SpecArg] -> [SpecArg] forall a b. (a -> b) -> a -> b $ (OutExpr -> PiTyBinder -> SpecArg) -> [OutExpr] -> [PiTyBinder] -> [SpecArg] forall a b c. (a -> b -> c) -> [a] -> [b] -> [c] zipWith OutExpr -> PiTyBinder -> SpecArg mk_spec_arg [OutExpr] args [PiTyBinder] pis -- Establish (CI-KEY): drop trailing args until we get to a SpecDict mk_spec_arg :: OutExpr -> PiTyBinder -> SpecArg mk_spec_arg :: OutExpr -> PiTyBinder -> SpecArg mk_spec_arg OutExpr arg (Named ForAllTyBinder bndr) | ForAllTyBinder -> Id forall tv argf. VarBndr tv argf -> tv binderVar ForAllTyBinder bndr Id -> IdSet -> Bool `elemVarSet` IdSet constrained_tyvars = case OutExpr arg of Type Kind ty -> Kind -> SpecArg SpecType Kind ty OutExpr _ -> String -> SDoc -> SpecArg forall a. HasCallStack => String -> SDoc -> a pprPanic String "ci_key" (SDoc -> SpecArg) -> SDoc -> SpecArg forall a b. (a -> b) -> a -> b $ OutExpr -> SDoc forall a. Outputable a => a -> SDoc ppr OutExpr arg | Bool otherwise = SpecArg UnspecType -- For "invisibleFunArg", which are the type-class dictionaries, -- we decide on a case by case basis if we want to specialise -- on this argument; if so, SpecDict, if not UnspecArg mk_spec_arg OutExpr arg (Anon Scaled Kind pred FunTyFlag af) | FunTyFlag -> Bool isInvisibleFunArg FunTyFlag af , OutExpr -> Kind -> Bool interestingDict OutExpr arg (Scaled Kind -> Kind forall a. Scaled a -> a scaledThing Scaled Kind pred) -- See Note [Interesting dictionary arguments] = OutExpr -> SpecArg SpecDict OutExpr arg | Bool otherwise = SpecArg UnspecArg {- Note [Ticks on applications] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ticks such as source location annotations can sometimes make their way onto applications (see e.g. #21697). So if we see something like App (Tick _ f) e we need to descend below the tick to find what the real function being applied is. The resulting RULE also has to be able to match this annotated use site, so we only look through ticks that RULE matching looks through (see Note [Tick annotations in RULE matching] in GHC.Core.Rules). -} wantCallsFor :: SpecEnv -> Id -> Bool -- See Note [wantCallsFor] wantCallsFor :: SpecEnv -> Id -> Bool wantCallsFor SpecEnv _env Id f = case Id -> IdDetails idDetails Id f of RecSelId {} -> Bool False DataConWorkId {} -> Bool False DataConWrapId {} -> Bool False ClassOpId {} -> Bool False PrimOpId {} -> Bool False FCallId {} -> Bool False TickBoxOpId {} -> Bool False CoVarId {} -> Bool False DFunId {} -> Bool True VanillaId {} -> Bool True JoinId {} -> Bool True WorkerLikeId {} -> Bool True RepPolyId {} -> Bool True {- Note [wantCallsFor] ~~~~~~~~~~~~~~~~~~~~~~ `wantCallsFor env f` says whether the Specialiser should collect calls for function `f`; other thing being equal, the fewer calls we collect the better. It is False for things we can't specialise: * ClassOpId: never inline and we don't have a defn to specialise; we specialise them through fireRewriteRules. * PrimOpId: are never overloaded * Data constructors: we never specialise them We could reduce the size of the UsageDetails by being less eager about collecting calls for some LocalIds: there is no point for ones that are lambda-bound. We can't decide this by looking at the (absence of an) unfolding, because unfoldings for local functions are discarded by cloneBindSM, so no local binder will have an unfolding at this stage. We'd have to keep a candidate set of let-binders. Not many lambda-bound variables have dictionary arguments, so this would make little difference anyway. For imported Ids we could check for an unfolding, but we have to do so anyway in canSpecImport, and it seems better to have it all in one place. So we simply collect usage info for imported overloaded functions. Note [Interesting dictionary arguments] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In `mkCallUDs` we only use `SpecDict` for dictionaries of which `interestingDict` holds. Otherwise we use `UnspecArg`. Two reasons: * Consider this \a.\d:Eq a. let f = ... in ...(f d)... There really is not much point in specialising f wrt the dictionary d, because the code for the specialised f is not improved at all, because d is lambda-bound. We simply get junk specialisations. * Consider this (#25703): f :: (Eq a, Show b) => a -> b -> INt goo :: forall x. (Eq x) => x -> blah goo @x (d:Eq x) (arg:x) = ...(f @x @Int d $fShowInt)... If we built a `ci_key` with a (SpecDict d) for `d`, we would end up discarding the call at the `\d`. But if we use `UnspecArg` for that uninteresting `d`, we'll get a `ci_key` of f @x @Int UnspecArg (SpecDict $fShowInt) and /that/ can float out to f's definition and specialise nicely. Hooray. (NB: the call can float only if `-fpolymorphic-specialisation` is on; otherwise it'll be trapped by the `\@x -> ...`.)( What is "interesting"? (See `interestingDict`.) Just that it has *some* structure. But what about variables? We look in the variable's /unfolding/. And that means that we must be careful to ensure that dictionaries /have/ unfoldings, * cloneBndrSM discards non-Stable unfoldings * specBind updates the unfolding after specialisation See Note [Update unfolding after specialisation] * bindAuxiliaryDict adds an unfolding for an aux dict see Note [Specialisation modulo dictionary selectors] * specCase adds unfoldings for the new bindings it creates We accidentally lost accurate tracking of local variables for a long time, because cloned variables didn't have unfoldings. But makes a massive difference in a few cases, eg #5113. For nofib as a whole it's only a small win: 2.2% improvement in allocation for ansi, 1.2% for bspt, but mostly 0.0! Average 0.1% increase in binary size. Note [Update unfolding after specialisation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider (#21848) wombat :: Show b => Int -> b -> String wombat a b | a>0 = wombat (a-1) b | otherwise = show a ++ wombat a b class C a where meth :: Show b => a -> b -> String dummy :: a -> () -- Force a datatype dictionary representation instance C Int where meth = wombat dummy _ = () class C a => D a -- D has C as a superclass instance D Int f :: (D a, Show b) => a -> b -> String {-# INLINABLE[0] f #-} f a b = meth a b ++ "!" ++ meth a b Now `f` turns into: f @a @b (dd :: D a) (ds :: Show b) a b = let dc :: D a = %p1 dd -- Superclass selection in meth @a dc .... meth @a dc .... When we specialise `f`, at a=Int say, that superclass selection can fire (via rewiteClassOps), but that info (that 'dc' is now a particular dictionary `C`, of type `C Int`) must be available to the call `meth @a dc`, so that we can fire the `meth` class-op, and thence specialise `wombat`. We deliver on this idea by updating the unfolding for the binder in the NonRec case of specBind. (This is too exotic to trouble with the Rec case.) -} interestingDict :: CoreExpr -> Type -> Bool -- A dictionary argument is interesting if it has *some* structure, -- see Note [Interesting dictionary arguments] -- NB: "dictionary" arguments include constraints of all sorts, -- including equality constraints; hence the Coercion case -- To make this work, we need to ensure that dictionaries have -- unfoldings in them. interestingDict :: OutExpr -> Kind -> Bool interestingDict OutExpr arg Kind arg_ty | Bool -> Bool not (Kind -> Bool typeDeterminesValue Kind arg_ty) = Bool False -- See Note [Type determines value] | Bool otherwise = OutExpr -> Bool forall b. Expr b -> Bool go OutExpr arg where go :: Expr b -> Bool go (Var Id v) = Unfolding -> Bool hasSomeUnfolding (Id -> Unfolding idUnfolding Id v) Bool -> Bool -> Bool || Id -> Bool isDataConWorkId Id v go (Type Kind _) = Bool False go (Coercion Coercion _) = Bool False go (App Expr b fn (Type Kind _)) = Expr b -> Bool go Expr b fn go (App Expr b fn (Coercion Coercion _)) = Expr b -> Bool go Expr b fn go (Tick CoreTickish _ Expr b a) = Expr b -> Bool go Expr b a go (Cast Expr b e Coercion _) = Expr b -> Bool go Expr b e go Expr b _ = Bool True thenUDs :: UsageDetails -> UsageDetails -> UsageDetails thenUDs :: UsageDetails -> UsageDetails -> UsageDetails thenUDs (MkUD {ud_binds :: UsageDetails -> FloatedDictBinds ud_binds = FloatedDictBinds db1, ud_calls :: UsageDetails -> CallDetails ud_calls = CallDetails calls1}) (MkUD {ud_binds :: UsageDetails -> FloatedDictBinds ud_binds = FloatedDictBinds db2, ud_calls :: UsageDetails -> CallDetails ud_calls = CallDetails calls2}) = MkUD { ud_binds :: FloatedDictBinds ud_binds = FloatedDictBinds db1 FloatedDictBinds -> FloatedDictBinds -> FloatedDictBinds `thenFDBs` FloatedDictBinds db2 , ud_calls :: CallDetails ud_calls = CallDetails calls1 CallDetails -> CallDetails -> CallDetails `unionCalls` CallDetails calls2 } thenFDBs :: FloatedDictBinds -> FloatedDictBinds -> FloatedDictBinds -- Combine FloatedDictBinds -- In (dbs1 `thenFDBs` dbs2), dbs2 may mention dbs1 but not vice versa thenFDBs :: FloatedDictBinds -> FloatedDictBinds -> FloatedDictBinds thenFDBs (FDB { fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind dbs1, fdb_bndrs :: FloatedDictBinds -> IdSet fdb_bndrs = IdSet bs1 }) (FDB { fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind dbs2, fdb_bndrs :: FloatedDictBinds -> IdSet fdb_bndrs = IdSet bs2 }) = FDB { fdb_binds :: OrdList DictBind fdb_binds = OrdList DictBind dbs1 OrdList DictBind -> OrdList DictBind -> OrdList DictBind forall a. OrdList a -> OrdList a -> OrdList a `appOL` OrdList DictBind dbs2 , fdb_bndrs :: IdSet fdb_bndrs = IdSet bs1 IdSet -> IdSet -> IdSet `unionVarSet` IdSet bs2 } ----------------------------- _dictBindBndrs :: OrdList DictBind -> [Id] _dictBindBndrs :: OrdList DictBind -> [Id] _dictBindBndrs OrdList DictBind dbs = (DictBind -> [Id] -> [Id]) -> [Id] -> OrdList DictBind -> [Id] forall a b. (a -> b -> b) -> b -> OrdList a -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr ([Id] -> [Id] -> [Id] forall a. [a] -> [a] -> [a] (++) ([Id] -> [Id] -> [Id]) -> (DictBind -> [Id]) -> DictBind -> [Id] -> [Id] forall b c a. (b -> c) -> (a -> b) -> a -> c . InBind -> [Id] forall b. Bind b -> [b] bindersOf (InBind -> [Id]) -> (DictBind -> InBind) -> DictBind -> [Id] forall b c a. (b -> c) -> (a -> b) -> a -> c . DictBind -> InBind db_bind) [] OrdList DictBind dbs -- | Construct a 'DictBind' from a 'CoreBind' mkDB :: CoreBind -> DictBind mkDB :: InBind -> DictBind mkDB InBind bind = DB { db_bind :: InBind db_bind = InBind bind, db_fvs :: IdSet db_fvs = InBind -> IdSet bind_fvs InBind bind } -- | Identify the free variables of a 'CoreBind' bind_fvs :: CoreBind -> VarSet bind_fvs :: InBind -> IdSet bind_fvs (NonRec Id bndr OutExpr rhs) = (Id, OutExpr) -> IdSet pair_fvs (Id bndr,OutExpr rhs) bind_fvs (Rec [(Id, OutExpr)] prs) = IdSet rhs_fvs IdSet -> [Id] -> IdSet `delVarSetList` (((Id, OutExpr) -> Id) -> [(Id, OutExpr)] -> [Id] forall a b. (a -> b) -> [a] -> [b] map (Id, OutExpr) -> Id forall a b. (a, b) -> a fst [(Id, OutExpr)] prs) where rhs_fvs :: IdSet rhs_fvs = [IdSet] -> IdSet unionVarSets (((Id, OutExpr) -> IdSet) -> [(Id, OutExpr)] -> [IdSet] forall a b. (a -> b) -> [a] -> [b] map (Id, OutExpr) -> IdSet pair_fvs [(Id, OutExpr)] prs) pair_fvs :: (Id, CoreExpr) -> VarSet pair_fvs :: (Id, OutExpr) -> IdSet pair_fvs (Id bndr, OutExpr rhs) = (Id -> Bool) -> OutExpr -> IdSet exprSomeFreeVars Id -> Bool interesting OutExpr rhs IdSet -> IdSet -> IdSet `unionVarSet` Id -> IdSet idFreeVars Id bndr -- idFreeVars: don't forget variables mentioned in -- the rules of the bndr. C.f. OccAnal.addRuleUsage -- Also tyvars mentioned in its type; they may not appear -- in the RHS -- type T a = Int -- x :: T a = 3 where interesting :: InterestingVarFun interesting :: Id -> Bool interesting Id v = Id -> Bool isLocalVar Id v Bool -> Bool -> Bool || (Id -> Bool isId Id v Bool -> Bool -> Bool && Id -> Bool isDFunId Id v) -- Very important: include DFunIds /even/ if it is imported -- Reason: See Note [Avoiding loops in specImports], the #13429 -- example involving an imported dfun. We must know -- whether a dictionary binding depends on an imported -- DFun in case we try to specialise that imported DFun -- | Flatten a set of "dumped" 'DictBind's, and some other binding -- pairs, into a single recursive binding. recWithDumpedDicts :: [(Id,CoreExpr)] -> OrdList DictBind -> DictBind recWithDumpedDicts :: [(Id, OutExpr)] -> OrdList DictBind -> DictBind recWithDumpedDicts [(Id, OutExpr)] pairs OrdList DictBind dbs = DB { db_bind :: InBind db_bind = [(Id, OutExpr)] -> InBind forall b. [(b, Expr b)] -> Bind b Rec [(Id, OutExpr)] bindings , db_fvs :: IdSet db_fvs = IdSet fvs IdSet -> [Id] -> IdSet `delVarSetList` ((Id, OutExpr) -> Id) -> [(Id, OutExpr)] -> [Id] forall a b. (a -> b) -> [a] -> [b] map (Id, OutExpr) -> Id forall a b. (a, b) -> a fst [(Id, OutExpr)] bindings } where ([(Id, OutExpr)] bindings, IdSet fvs) = (DictBind -> ([(Id, OutExpr)], IdSet) -> ([(Id, OutExpr)], IdSet)) -> ([(Id, OutExpr)], IdSet) -> OrdList DictBind -> ([(Id, OutExpr)], IdSet) forall a b. (a -> b -> b) -> b -> OrdList a -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr DictBind -> ([(Id, OutExpr)], IdSet) -> ([(Id, OutExpr)], IdSet) add ([], IdSet emptyVarSet) (OrdList DictBind dbs OrdList DictBind -> DictBind -> OrdList DictBind forall a. OrdList a -> a -> OrdList a `snocOL` InBind -> DictBind mkDB ([(Id, OutExpr)] -> InBind forall b. [(b, Expr b)] -> Bind b Rec [(Id, OutExpr)] pairs)) add :: DictBind -> ([(Id, OutExpr)], IdSet) -> ([(Id, OutExpr)], IdSet) add (DB { db_bind :: DictBind -> InBind db_bind = InBind bind, db_fvs :: DictBind -> IdSet db_fvs = IdSet fvs }) ([(Id, OutExpr)] prs_acc, IdSet fvs_acc) = case InBind bind of NonRec Id b OutExpr r -> ((Id b,OutExpr r) (Id, OutExpr) -> [(Id, OutExpr)] -> [(Id, OutExpr)] forall a. a -> [a] -> [a] : [(Id, OutExpr)] prs_acc, IdSet fvs') Rec [(Id, OutExpr)] prs1 -> ([(Id, OutExpr)] prs1 [(Id, OutExpr)] -> [(Id, OutExpr)] -> [(Id, OutExpr)] forall a. [a] -> [a] -> [a] ++ [(Id, OutExpr)] prs_acc, IdSet fvs') where fvs' :: IdSet fvs' = IdSet fvs_acc IdSet -> IdSet -> IdSet `unionVarSet` IdSet fvs snocDictBind :: UsageDetails -> DictBind -> UsageDetails snocDictBind :: UsageDetails -> DictBind -> UsageDetails snocDictBind uds :: UsageDetails uds@MkUD{ud_binds :: UsageDetails -> FloatedDictBinds ud_binds= FDB { fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind dbs, fdb_bndrs :: FloatedDictBinds -> IdSet fdb_bndrs = IdSet bs }} DictBind db = UsageDetails uds { ud_binds = FDB { fdb_binds = dbs `snocOL` db , fdb_bndrs = bs `extendVarSetList` bindersOfDictBind db } } snocDictBinds :: UsageDetails -> [DictBind] -> UsageDetails -- Add ud_binds to the tail end of the bindings in uds snocDictBinds :: UsageDetails -> [DictBind] -> UsageDetails snocDictBinds uds :: UsageDetails uds@MkUD{ud_binds :: UsageDetails -> FloatedDictBinds ud_binds=FDB{ fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind binds, fdb_bndrs :: FloatedDictBinds -> IdSet fdb_bndrs = IdSet bs }} [DictBind] dbs = UsageDetails uds { ud_binds = FDB { fdb_binds = binds `appOL` (toOL dbs) , fdb_bndrs = bs `extendVarSetList` bindersOfDictBinds dbs } } consDictBinds :: [DictBind] -> UsageDetails -> UsageDetails consDictBinds :: [DictBind] -> UsageDetails -> UsageDetails consDictBinds [DictBind] dbs uds :: UsageDetails uds@MkUD{ud_binds :: UsageDetails -> FloatedDictBinds ud_binds=FDB{fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind binds, fdb_bndrs :: FloatedDictBinds -> IdSet fdb_bndrs = IdSet bs}} = UsageDetails uds { ud_binds = FDB{ fdb_binds = toOL dbs `appOL` binds , fdb_bndrs = bs `extendVarSetList` bindersOfDictBinds dbs } } wrapDictBinds :: FloatedDictBinds -> [CoreBind] -> [CoreBind] wrapDictBinds :: FloatedDictBinds -> CoreProgram -> CoreProgram wrapDictBinds (FDB { fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind dbs }) CoreProgram binds = (DictBind -> CoreProgram -> CoreProgram) -> CoreProgram -> OrdList DictBind -> CoreProgram forall a b. (a -> b -> b) -> b -> OrdList a -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr DictBind -> CoreProgram -> CoreProgram add CoreProgram binds OrdList DictBind dbs where add :: DictBind -> CoreProgram -> CoreProgram add (DB { db_bind :: DictBind -> InBind db_bind = InBind bind }) CoreProgram binds = InBind bind InBind -> CoreProgram -> CoreProgram forall a. a -> [a] -> [a] : CoreProgram binds wrapDictBindsE :: OrdList DictBind -> CoreExpr -> CoreExpr wrapDictBindsE :: OrdList DictBind -> OutExpr -> OutExpr wrapDictBindsE OrdList DictBind dbs OutExpr expr = (DictBind -> OutExpr -> OutExpr) -> OutExpr -> OrdList DictBind -> OutExpr forall a b. (a -> b -> b) -> b -> OrdList a -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr DictBind -> OutExpr -> OutExpr add OutExpr expr OrdList DictBind dbs where add :: DictBind -> OutExpr -> OutExpr add (DB { db_bind :: DictBind -> InBind db_bind = InBind bind }) OutExpr expr = InBind -> OutExpr -> OutExpr forall b. Bind b -> Expr b -> Expr b Let InBind bind OutExpr expr ---------------------- dumpUDs :: [CoreBndr] -> UsageDetails -> (UsageDetails, OrdList DictBind) -- Used at a lambda or case binder; just dump anything mentioning the binder dumpUDs :: [Id] -> UsageDetails -> (UsageDetails, OrdList DictBind) dumpUDs [Id] bndrs uds :: UsageDetails uds@(MkUD { ud_binds :: UsageDetails -> FloatedDictBinds ud_binds = FloatedDictBinds orig_dbs, ud_calls :: UsageDetails -> CallDetails ud_calls = CallDetails orig_calls }) | [Id] -> Bool forall a. [a] -> Bool forall (t :: * -> *) a. Foldable t => t a -> Bool null [Id] bndrs = (UsageDetails uds, OrdList DictBind forall a. OrdList a nilOL) -- Common in case alternatives | Bool otherwise = -- pprTrace "dumpUDs" (vcat -- [ text "bndrs" <+> ppr bndrs -- , text "uds" <+> ppr uds -- , text "free_uds" <+> ppr free_uds -- , text "dump-dbs" <+> ppr dump_dbs ]) $ (UsageDetails free_uds, OrdList DictBind dump_dbs) where free_uds :: UsageDetails free_uds = UsageDetails uds { ud_binds = free_dbs, ud_calls = free_calls } bndr_set :: IdSet bndr_set = [Id] -> IdSet mkVarSet [Id] bndrs (FloatedDictBinds free_dbs, OrdList DictBind dump_dbs, IdSet dump_set) = FloatedDictBinds -> IdSet -> (FloatedDictBinds, OrdList DictBind, IdSet) splitDictBinds FloatedDictBinds orig_dbs IdSet bndr_set free_calls :: CallDetails free_calls = IdSet -> CallDetails -> CallDetails deleteCallsMentioning IdSet dump_set (CallDetails -> CallDetails) -> CallDetails -> CallDetails forall a b. (a -> b) -> a -> b $ -- Drop calls mentioning bndr_set on the floor [Id] -> CallDetails -> CallDetails deleteCallsFor [Id] bndrs CallDetails orig_calls -- Discard calls for bndr_set; there should be -- no calls for any of the dicts in dump_dbs dumpBindUDs :: [CoreBndr] -> UsageDetails -> (UsageDetails, OrdList DictBind, Bool) -- Used at a let(rec) binding. -- We return a boolean indicating whether the binding itself is mentioned, -- directly or indirectly, by any of the ud_calls; in that case we want to -- float the binding itself; -- See Note [Floated dictionary bindings] dumpBindUDs :: [Id] -> UsageDetails -> (UsageDetails, OrdList DictBind, Bool) dumpBindUDs [Id] bndrs (MkUD { ud_binds :: UsageDetails -> FloatedDictBinds ud_binds = FloatedDictBinds orig_dbs, ud_calls :: UsageDetails -> CallDetails ud_calls = CallDetails orig_calls }) = -- pprTrace "dumpBindUDs" (ppr bndrs $$ ppr free_uds $$ ppr dump_dbs $$ ppr float_all) $ (UsageDetails free_uds, OrdList DictBind dump_dbs, Bool float_all) where free_uds :: UsageDetails free_uds = MkUD { ud_binds :: FloatedDictBinds ud_binds = FloatedDictBinds free_dbs, ud_calls :: CallDetails ud_calls = CallDetails free_calls } bndr_set :: IdSet bndr_set = [Id] -> IdSet mkVarSet [Id] bndrs (FloatedDictBinds free_dbs, OrdList DictBind dump_dbs, IdSet dump_set) = FloatedDictBinds -> IdSet -> (FloatedDictBinds, OrdList DictBind, IdSet) splitDictBinds FloatedDictBinds orig_dbs IdSet bndr_set free_calls :: CallDetails free_calls = [Id] -> CallDetails -> CallDetails deleteCallsFor [Id] bndrs CallDetails orig_calls float_all :: Bool float_all = IdSet dump_set IdSet -> IdSet -> Bool `intersectsVarSet` CallDetails -> IdSet callDetailsFVs CallDetails free_calls callsForMe :: Id -> UsageDetails -> (UsageDetails, [CallInfo]) callsForMe :: Id -> UsageDetails -> (UsageDetails, [CallInfo]) callsForMe Id fn uds :: UsageDetails uds@MkUD { ud_binds :: UsageDetails -> FloatedDictBinds ud_binds = FloatedDictBinds orig_dbs, ud_calls :: UsageDetails -> CallDetails ud_calls = CallDetails orig_calls } = -- pprTrace ("callsForMe") -- (vcat [ppr fn, -- text "Orig dbs =" <+> ppr (_dictBindBndrs orig_dbs), -- text "Orig calls =" <+> ppr orig_calls, -- text "Calls for me =" <+> ppr calls_for_me]) $ (UsageDetails uds_without_me, [CallInfo] calls_for_me) where uds_without_me :: UsageDetails uds_without_me = UsageDetails uds { ud_calls = delDVarEnv orig_calls fn } calls_for_me :: [CallInfo] calls_for_me = case CallDetails -> Id -> Maybe CallInfoSet forall a. DVarEnv a -> Id -> Maybe a lookupDVarEnv CallDetails orig_calls Id fn of Maybe CallInfoSet Nothing -> [] Just CallInfoSet cis -> CallInfoSet -> FloatedDictBinds -> [CallInfo] filterCalls CallInfoSet cis FloatedDictBinds orig_dbs ---------------------- filterCalls :: CallInfoSet -> FloatedDictBinds -> [CallInfo] -- Remove -- (a) dominated calls: (MP3) in Note [Specialising polymorphic dictionaries] -- (b) loopy DFuns: Note [Avoiding loops (DFuns)] filterCalls :: CallInfoSet -> FloatedDictBinds -> [CallInfo] filterCalls (CIS Id fn Bag CallInfo call_bag) (FDB { fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind dbs }) | Id -> Bool isDFunId Id fn = (CallInfo -> Bool) -> [CallInfo] -> [CallInfo] forall a. (a -> Bool) -> [a] -> [a] filter CallInfo -> Bool ok_call [CallInfo] de_dupd_calls -- Deals with (b) | Bool otherwise = [CallInfo] de_dupd_calls where de_dupd_calls :: [CallInfo] de_dupd_calls = Bag CallInfo -> [CallInfo] removeDupCalls Bag CallInfo call_bag -- Deals with (a) dump_set :: IdSet dump_set = (IdSet -> DictBind -> IdSet) -> IdSet -> OrdList DictBind -> IdSet forall b a. (b -> a -> b) -> b -> OrdList a -> b forall (t :: * -> *) b a. Foldable t => (b -> a -> b) -> b -> t a -> b foldl' IdSet -> DictBind -> IdSet go (Id -> IdSet unitVarSet Id fn) OrdList DictBind dbs -- This dump-set could also be computed by splitDictBinds -- (_,_,dump_set) = splitDictBinds dbs {fn} -- But this variant is shorter go :: IdSet -> DictBind -> IdSet go IdSet so_far (DB { db_bind :: DictBind -> InBind db_bind = InBind bind, db_fvs :: DictBind -> IdSet db_fvs = IdSet fvs }) | IdSet fvs IdSet -> IdSet -> Bool `intersectsVarSet` IdSet so_far = IdSet -> [Id] -> IdSet extendVarSetList IdSet so_far (InBind -> [Id] forall b. Bind b -> [b] bindersOf InBind bind) | Bool otherwise = IdSet so_far ok_call :: CallInfo -> Bool ok_call (CI { ci_fvs :: CallInfo -> IdSet ci_fvs = IdSet fvs }) = IdSet fvs IdSet -> IdSet -> Bool `disjointVarSet` IdSet dump_set removeDupCalls :: Bag CallInfo -> [CallInfo] -- Calls involving more generic instances beat more specific ones. -- See (MP3) in Note [Specialising polymorphic dictionaries] removeDupCalls :: Bag CallInfo -> [CallInfo] removeDupCalls Bag CallInfo calls = (CallInfo -> [CallInfo] -> [CallInfo]) -> [CallInfo] -> Bag CallInfo -> [CallInfo] forall a b. (a -> b -> b) -> b -> Bag a -> b forall (t :: * -> *) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr CallInfo -> [CallInfo] -> [CallInfo] add [] Bag CallInfo calls where add :: CallInfo -> [CallInfo] -> [CallInfo] add :: CallInfo -> [CallInfo] -> [CallInfo] add CallInfo ci [] = [CallInfo ci] add CallInfo ci1 (CallInfo ci2:[CallInfo] cis) | CallInfo ci2 CallInfo -> CallInfo -> Bool `beats_or_same` CallInfo ci1 = CallInfo ci2CallInfo -> [CallInfo] -> [CallInfo] forall a. a -> [a] -> [a] :[CallInfo] cis | CallInfo ci1 CallInfo -> CallInfo -> Bool `beats_or_same` CallInfo ci2 = CallInfo ci1CallInfo -> [CallInfo] -> [CallInfo] forall a. a -> [a] -> [a] :[CallInfo] cis | Bool otherwise = CallInfo ci2 CallInfo -> [CallInfo] -> [CallInfo] forall a. a -> [a] -> [a] : CallInfo -> [CallInfo] -> [CallInfo] add CallInfo ci1 [CallInfo] cis beats_or_same :: CallInfo -> CallInfo -> Bool -- (beats_or_same ci1 ci2) is True if specialising on ci1 subsumes ci2 -- That is: ci1's types are less specialised than ci2 -- ci1 specialises on the same dict args as ci2 beats_or_same :: CallInfo -> CallInfo -> Bool beats_or_same (CI { ci_key :: CallInfo -> [SpecArg] ci_key = [SpecArg] args1 }) (CI { ci_key :: CallInfo -> [SpecArg] ci_key = [SpecArg] args2 }) = [SpecArg] -> [SpecArg] -> Bool go [SpecArg] args1 [SpecArg] args2 where go :: [SpecArg] -> [SpecArg] -> Bool go [] [] = Bool True go (SpecArg arg1:[SpecArg] args1) (SpecArg arg2:[SpecArg] args2) = SpecArg -> SpecArg -> Bool go_arg SpecArg arg1 SpecArg arg2 Bool -> Bool -> Bool && [SpecArg] -> [SpecArg] -> Bool go [SpecArg] args1 [SpecArg] args2 -- If one or the other runs dry, the other must still have a SpecDict -- because of the (CI-KEY) invariant. So neither subsumes the other; -- one is more specialised (faster code) but the other is more generally -- applicable. go [SpecArg] _ [SpecArg] _ = Bool False go_arg :: SpecArg -> SpecArg -> Bool go_arg (SpecType Kind ty1) (SpecType Kind ty2) = Maybe Subst -> Bool forall a. Maybe a -> Bool isJust (HasDebugCallStack => Kind -> Kind -> Maybe Subst Kind -> Kind -> Maybe Subst tcMatchTy Kind ty1 Kind ty2) go_arg SpecArg UnspecType SpecArg UnspecType = Bool True go_arg (SpecDict {}) (SpecDict {}) = Bool True go_arg SpecArg UnspecArg SpecArg UnspecArg = Bool True go_arg SpecArg _ SpecArg _ = Bool False ---------------------- splitDictBinds :: FloatedDictBinds -> IdSet -> (FloatedDictBinds, OrdList DictBind, IdSet) -- splitDictBinds dbs bndrs returns -- (free_dbs, dump_dbs, dump_set) -- where -- * dump_dbs depends, transitively on bndrs -- * free_dbs does not depend on bndrs -- * dump_set = bndrs `union` bndrs(dump_dbs) splitDictBinds :: FloatedDictBinds -> IdSet -> (FloatedDictBinds, OrdList DictBind, IdSet) splitDictBinds (FDB { fdb_binds :: FloatedDictBinds -> OrdList DictBind fdb_binds = OrdList DictBind dbs, fdb_bndrs :: FloatedDictBinds -> IdSet fdb_bndrs = IdSet bs }) IdSet bndr_set = (FDB { fdb_binds :: OrdList DictBind fdb_binds = OrdList DictBind free_dbs , fdb_bndrs :: IdSet fdb_bndrs = IdSet bs IdSet -> IdSet -> IdSet `minusVarSet` IdSet dump_set } , OrdList DictBind dump_dbs, IdSet dump_set) where (OrdList DictBind free_dbs, OrdList DictBind dump_dbs, IdSet dump_set) = ((OrdList DictBind, OrdList DictBind, IdSet) -> DictBind -> (OrdList DictBind, OrdList DictBind, IdSet)) -> (OrdList DictBind, OrdList DictBind, IdSet) -> OrdList DictBind -> (OrdList DictBind, OrdList DictBind, IdSet) forall b a. (b -> a -> b) -> b -> OrdList a -> b forall (t :: * -> *) b a. Foldable t => (b -> a -> b) -> b -> t a -> b foldl' (OrdList DictBind, OrdList DictBind, IdSet) -> DictBind -> (OrdList DictBind, OrdList DictBind, IdSet) split_db (OrdList DictBind forall a. OrdList a nilOL, OrdList DictBind forall a. OrdList a nilOL, IdSet bndr_set) OrdList DictBind dbs -- Important that it's foldl' not foldr; -- we're accumulating the set of dumped ids in dump_set split_db :: (OrdList DictBind, OrdList DictBind, IdSet) -> DictBind -> (OrdList DictBind, OrdList DictBind, IdSet) split_db (OrdList DictBind free_dbs, OrdList DictBind dump_dbs, IdSet dump_idset) DictBind db | DB { db_bind :: DictBind -> InBind db_bind = InBind bind, db_fvs :: DictBind -> IdSet db_fvs = IdSet fvs } <- DictBind db , IdSet dump_idset IdSet -> IdSet -> Bool `intersectsVarSet` IdSet fvs -- Dump it = (OrdList DictBind free_dbs, OrdList DictBind dump_dbs OrdList DictBind -> DictBind -> OrdList DictBind forall a. OrdList a -> a -> OrdList a `snocOL` DictBind db, IdSet -> [Id] -> IdSet extendVarSetList IdSet dump_idset (InBind -> [Id] forall b. Bind b -> [b] bindersOf InBind bind)) | Bool otherwise -- Don't dump it = (OrdList DictBind free_dbs OrdList DictBind -> DictBind -> OrdList DictBind forall a. OrdList a -> a -> OrdList a `snocOL` DictBind db, OrdList DictBind dump_dbs, IdSet dump_idset) ---------------------- deleteCallsMentioning :: VarSet -> CallDetails -> CallDetails -- Remove calls mentioning any Id in bndrs -- NB: The call is allowed to mention TyVars in bndrs -- Note [Specialising polymorphic dictionaries] -- ci_fvs are just the free /Ids/ deleteCallsMentioning :: IdSet -> CallDetails -> CallDetails deleteCallsMentioning IdSet bndrs CallDetails calls = (CallInfoSet -> CallInfoSet) -> CallDetails -> CallDetails forall a b. (a -> b) -> DVarEnv a -> DVarEnv b mapDVarEnv ((CallInfo -> Bool) -> CallInfoSet -> CallInfoSet ciSetFilter CallInfo -> Bool keep_call) CallDetails calls where keep_call :: CallInfo -> Bool keep_call (CI { ci_fvs :: CallInfo -> IdSet ci_fvs = IdSet fvs }) = IdSet fvs IdSet -> IdSet -> Bool `disjointVarSet` IdSet bndrs deleteCallsFor :: [Id] -> CallDetails -> CallDetails -- Remove calls *for* bndrs deleteCallsFor :: [Id] -> CallDetails -> CallDetails deleteCallsFor [Id] bndrs CallDetails calls = CallDetails -> [Id] -> CallDetails forall a. DVarEnv a -> [Id] -> DVarEnv a delDVarEnvList CallDetails calls [Id] bndrs {- ************************************************************************ * * \subsubsection{Boring helper functions} * * ************************************************************************ -} type SpecM a = UniqSM a runSpecM :: SpecM a -> CoreM a runSpecM :: forall a. SpecM a -> CoreM a runSpecM SpecM a thing_inside = do { us <- CoreM UniqSupply forall (m :: * -> *). MonadUnique m => m UniqSupply getUniqueSupplyM ; return (initUs_ us thing_inside) } mapAndCombineSM :: (a -> SpecM (b, UsageDetails)) -> [a] -> SpecM ([b], UsageDetails) mapAndCombineSM :: forall a b. (a -> SpecM (b, UsageDetails)) -> [a] -> SpecM ([b], UsageDetails) mapAndCombineSM a -> SpecM (b, UsageDetails) _ [] = ([b], UsageDetails) -> UniqSM ([b], UsageDetails) forall a. a -> UniqSM a forall (m :: * -> *) a. Monad m => a -> m a return ([], UsageDetails emptyUDs) mapAndCombineSM a -> SpecM (b, UsageDetails) f (a x:[a] xs) = do (y, uds1) <- a -> SpecM (b, UsageDetails) f a x (ys, uds2) <- mapAndCombineSM f xs return (y:ys, uds1 `thenUDs` uds2) extendTvSubst :: SpecEnv -> TyVar -> Type -> SpecEnv extendTvSubst :: SpecEnv -> Id -> Kind -> SpecEnv extendTvSubst SpecEnv env Id tv Kind ty = SpecEnv env { se_subst = Core.extendTvSubst (se_subst env) tv ty } extendInScope :: SpecEnv -> OutId -> SpecEnv extendInScope :: SpecEnv -> Id -> SpecEnv extendInScope env :: SpecEnv env@(SE { se_subst :: SpecEnv -> Subst se_subst = Subst subst }) Id bndr = SpecEnv env { se_subst = subst `Core.extendSubstInScope` bndr } zapSubst :: SpecEnv -> SpecEnv zapSubst :: SpecEnv -> SpecEnv zapSubst env :: SpecEnv env@(SE { se_subst :: SpecEnv -> Subst se_subst = Subst subst }) = SpecEnv env { se_subst = Core.zapSubst subst } substTy :: SpecEnv -> Type -> Type substTy :: SpecEnv -> Kind -> Kind substTy SpecEnv env Kind ty = Subst -> Kind -> Kind substTyUnchecked (SpecEnv -> Subst se_subst SpecEnv env) Kind ty substCo :: SpecEnv -> Coercion -> Coercion substCo :: SpecEnv -> Coercion -> Coercion substCo SpecEnv env Coercion co = HasDebugCallStack => Subst -> Coercion -> Coercion Subst -> Coercion -> Coercion Core.substCo (SpecEnv -> Subst se_subst SpecEnv env) Coercion co substBndr :: SpecEnv -> CoreBndr -> (SpecEnv, CoreBndr) substBndr :: SpecEnv -> Id -> (SpecEnv, Id) substBndr SpecEnv env Id bs = case Subst -> Id -> (Subst, Id) Core.substBndr (SpecEnv -> Subst se_subst SpecEnv env) Id bs of (Subst subst', Id bs') -> (SpecEnv env { se_subst = subst' }, Id bs') substBndrs :: Traversable f => SpecEnv -> f CoreBndr -> (SpecEnv, f CoreBndr) substBndrs :: forall (f :: * -> *). Traversable f => SpecEnv -> f Id -> (SpecEnv, f Id) substBndrs SpecEnv env f Id bs = case Subst -> f Id -> (Subst, f Id) forall (f :: * -> *). Traversable f => Subst -> f Id -> (Subst, f Id) Core.substBndrs (SpecEnv -> Subst se_subst SpecEnv env) f Id bs of (Subst subst', f Id bs') -> (SpecEnv env { se_subst = subst' }, f Id bs') cloneBndrSM :: SpecEnv -> Id -> SpecM (SpecEnv, Id) -- Clone the binders of the bind; return new bind with the cloned binders -- Return the substitution to use for RHSs, and the one to use for the body -- Discards non-Stable unfoldings cloneBndrSM :: SpecEnv -> Id -> UniqSM (SpecEnv, Id) cloneBndrSM env :: SpecEnv env@(SE { se_subst :: SpecEnv -> Subst se_subst = Subst subst }) Id bndr = do { us <- UniqSM UniqSupply forall (m :: * -> *). MonadUnique m => m UniqSupply getUniqueSupplyM ; let (subst', bndr') = Core.cloneIdBndr subst us bndr ; return (env { se_subst = subst' }, bndr') } cloneRecBndrsSM :: SpecEnv -> [Id] -> SpecM (SpecEnv, [Id]) cloneRecBndrsSM :: SpecEnv -> [Id] -> UniqSM (SpecEnv, [Id]) cloneRecBndrsSM env :: SpecEnv env@(SE { se_subst :: SpecEnv -> Subst se_subst = Subst subst }) [Id] bndrs = do { (subst', bndrs') <- Subst -> [Id] -> UniqSM (Subst, [Id]) forall (m :: * -> *). MonadUnique m => Subst -> [Id] -> m (Subst, [Id]) Core.cloneRecIdBndrsM Subst subst [Id] bndrs ; let env' = SpecEnv env { se_subst = subst' } ; return (env', bndrs') } newDictBndr :: SpecEnv -> CoreBndr -> SpecM (SpecEnv, CoreBndr) -- Make up completely fresh binders for the dictionaries -- Their bindings are going to float outwards newDictBndr :: SpecEnv -> Id -> UniqSM (SpecEnv, Id) newDictBndr env :: SpecEnv env@(SE { se_subst :: SpecEnv -> Subst se_subst = Subst subst }) Id b = do { uniq <- UniqSM Unique forall (m :: * -> *). MonadUnique m => m Unique getUniqueM ; let n = Id -> Name idName Id b ty' = Subst -> Kind -> Kind substTyUnchecked Subst subst (Id -> Kind idType Id b) b' = OccName -> Unique -> Kind -> Kind -> SrcSpan -> Id mkUserLocal (Name -> OccName nameOccName Name n) Unique uniq Kind ManyTy Kind ty' (Name -> SrcSpan forall a. NamedThing a => a -> SrcSpan getSrcSpan Name n) env' = SpecEnv env { se_subst = subst `Core.extendSubstInScope` b' } ; pure (env', b') } newSpecIdSM :: Name -> Type -> IdDetails -> IdInfo -> SpecM Id -- Give the new Id a similar occurrence name to the old one newSpecIdSM :: Name -> Kind -> IdDetails -> IdInfo -> SpecM Id newSpecIdSM Name old_name Kind new_ty IdDetails details IdInfo info = do { uniq <- UniqSM Unique forall (m :: * -> *). MonadUnique m => m Unique getUniqueM ; let new_occ = OccName -> OccName mkSpecOcc (Name -> OccName nameOccName Name old_name) new_name = Unique -> OccName -> SrcSpan -> Name mkInternalName Unique uniq OccName new_occ (Name -> SrcSpan forall a. NamedThing a => a -> SrcSpan getSrcSpan Name old_name) ; return (assert (not (isCoVarType new_ty)) $ mkLocalVar details new_name ManyTy new_ty info) } {- Old (but interesting) stuff about unboxed bindings ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ What should we do when a value is specialised to a *strict* unboxed value? map_*_* f (x:xs) = let h = f x t = map f xs in h:t Could convert let to case: map_*_Int# f (x:xs) = case f x of h# -> let t = map f xs in h#:t This may be undesirable since it forces evaluation here, but the value may not be used in all branches of the body. In the general case this transformation is impossible since the mutual recursion in a letrec cannot be expressed as a case. There is also a problem with top-level unboxed values, since our implementation cannot handle unboxed values at the top level. Solution: Lift the binding of the unboxed value and extract it when it is used: map_*_Int# f (x:xs) = let h = case (f x) of h# -> _Lift h# t = map f xs in case h of _Lift h# -> h#:t Now give it to the simplifier and the _Lifting will be optimised away. The benefit is that we have given the specialised "unboxed" values a very simple lifted semantics and then leave it up to the simplifier to optimise it --- knowing that the overheads will be removed in nearly all cases. In particular, the value will only be evaluated in the branches of the program which use it, rather than being forced at the point where the value is bound. For example: filtermap_*_* p f (x:xs) = let h = f x t = ... in case p x of True -> h:t False -> t ==> filtermap_*_Int# p f (x:xs) = let h = case (f x) of h# -> _Lift h# t = ... in case p x of True -> case h of _Lift h# -> h#:t False -> t The binding for h can still be inlined in the one branch and the _Lifting eliminated. Question: When won't the _Lifting be eliminated? Answer: When they at the top-level (where it is necessary) or when inlining would duplicate work (or possibly code depending on options). However, the _Lifting will still be eliminated if the strictness analyser deems the lifted binding strict. -}