{-# LANGUAGE FlexibleInstances  #-}
{-# LANGUAGE LambdaCase         #-}
{-# LANGUAGE DeriveDataTypeable #-}

{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


The @TyCon@ datatype
-}

module GHC.Core.TyCon(
        -- * Main TyCon data types
        TyCon,
        AlgTyConRhs(..), visibleDataCons,
        AlgTyConFlav(..), isNoParent,
        FamTyConFlav(..), Role(..), Injectivity(..),
        PromDataConInfo(..), TyConFlavour(..),

        -- * TyConBinder
        TyConBinder, TyConBndrVis(..),
        mkNamedTyConBinder, mkNamedTyConBinders,
        mkRequiredTyConBinder,
        mkAnonTyConBinder, mkAnonTyConBinders,
        tyConBinderForAllTyFlag, tyConBndrVisForAllTyFlag, isNamedTyConBinder,
        isVisibleTyConBinder, isInvisibleTyConBinder,
        isVisibleTcbVis, isInvisSpecTcbVis,

        -- ** Field labels
        tyConFieldLabels, lookupTyConFieldLabel,

        -- ** Constructing TyCons
        mkAlgTyCon,
        mkClassTyCon,
        mkPrimTyCon,
        mkTupleTyCon,
        mkSumTyCon,
        mkDataTyConRhs,
        mkLevPolyDataTyConRhs,
        mkSynonymTyCon,
        mkFamilyTyCon,
        mkPromotedDataCon,
        mkTcTyCon,
        noTcTyConScopedTyVars,

        -- ** Predicates on TyCons
        isAlgTyCon, isVanillaAlgTyCon,
        isClassTyCon, isFamInstTyCon,
        isPrimTyCon,
        isTupleTyCon, isUnboxedTupleTyCon, isBoxedTupleTyCon,
        isUnboxedSumTyCon, isPromotedTupleTyCon,
        isLiftedAlgTyCon,
        isTypeSynonymTyCon,
        tyConMustBeSaturated,
        isPromotedDataCon, isPromotedDataCon_maybe,
        isDataKindsPromotedDataCon,
        isKindTyCon, isKindName, isLiftedTypeKindTyConName,
        isTauTyCon, isFamFreeTyCon, isForgetfulSynTyCon,

        isDataTyCon,
        isTypeDataTyCon,
        isEnumerationTyCon,
        isNewTyCon, isAbstractTyCon,
        isFamilyTyCon, isOpenFamilyTyCon,
        isTypeFamilyTyCon, isDataFamilyTyCon,
        isOpenTypeFamilyTyCon, isClosedSynFamilyTyConWithAxiom_maybe,
        tyConInjectivityInfo,
        isBuiltInSynFamTyCon_maybe,
        isGadtSyntaxTyCon, isInjectiveTyCon, isGenerativeTyCon, isGenInjAlgRhs,
        isTyConAssoc, tyConAssoc_maybe, tyConFlavourAssoc_maybe,
        isImplicitTyCon,
        isTyConWithSrcDataCons,
        isTcTyCon, setTcTyConKind,
        tcHasFixedRuntimeRep,
        isConcreteTyCon,
        isValidDTT2TyCon,

        -- ** Extracting information out of TyCons
        tyConName,
        tyConSkolem,
        tyConKind,
        tyConUnique,
        tyConTyVars, tyConVisibleTyVars,
        tyConCType_maybe,
        tyConDataCons, tyConDataCons_maybe,
        tyConSingleDataCon_maybe, tyConSingleDataCon,
        tyConAlgDataCons_maybe,
        tyConSingleAlgDataCon_maybe,
        tyConFamilySize,
        tyConStupidTheta,
        tyConArity,
        tyConNullaryTy, mkTyConTy,
        tyConRoles,
        tyConFlavour,
        tyConTuple_maybe, tyConClass_maybe, tyConATs,
        tyConFamInst_maybe, tyConFamInstSig_maybe, tyConFamilyCoercion_maybe,
        tyConFamilyResVar_maybe,
        synTyConDefn_maybe, synTyConRhs_maybe,
        famTyConFlav_maybe,
        algTyConRhs,
        newTyConRhs, newTyConEtadArity, newTyConEtadRhs,
        unwrapNewTyCon_maybe, unwrapNewTyConEtad_maybe,
        newTyConDataCon_maybe,
        algTcFields,
        tyConPromDataConInfo,
        tyConBinders, tyConResKind, tyConInvisTVBinders,
        tcTyConScopedTyVars, isMonoTcTyCon,
        tyConHasClosedResKind,
        mkTyConTagMap,

        -- ** Manipulating TyCons
        ExpandSynResult(..),
        expandSynTyCon_maybe,
        newTyConCo, newTyConCo_maybe,
        pprPromotionQuote, mkTyConKind,

        -- ** Predicated on TyConFlavours
        tcFlavourIsOpen,

        -- * Runtime type representation
        TyConRepName, tyConRepName_maybe,
        mkPrelTyConRepName,
        tyConRepModOcc,

        -- * Primitive representations of Types
        PrimRep(..), PrimElemRep(..), Levity(..),
        PrimOrVoidRep(..),
        primElemRepToPrimRep,
        isGcPtrRep,
        primRepSizeB, primRepSizeW64_B,
        primElemRepSizeB, primElemRepSizeW64_B,
        primRepIsFloat,
        primRepsCompatible,
        primRepCompatible,
        primRepIsWord,
        primRepIsInt,

) where

import GHC.Prelude
import GHC.Platform

import {-# SOURCE #-} GHC.Core.TyCo.Rep
   ( Kind, Type, PredType, mkForAllTy, mkNakedFunTy, mkNakedTyConTy )
import {-# SOURCE #-} GHC.Core.TyCo.FVs
   ( noFreeVarsOfType )
import {-# SOURCE #-} GHC.Core.TyCo.Ppr
   ( pprType )
import {-# SOURCE #-} GHC.Builtin.Types
   ( runtimeRepTyCon, constraintKind, levityTyCon
   , multiplicityTyCon
   , vecCountTyCon, vecElemTyCon )
import {-# SOURCE #-} GHC.Core.DataCon
   ( DataCon, dataConFieldLabels
   , dataConTyCon, dataConFullSig
   , isUnboxedSumDataCon, isTypeDataCon )
import {-# SOURCE #-} GHC.Core.Type
   ( isLiftedTypeKind )
import GHC.Builtin.Uniques
  ( tyConRepNameUnique
  , dataConTyRepNameUnique )

import GHC.Utils.Binary
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Core.Class
import GHC.Types.Basic
import GHC.Types.ForeignCall
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Core.Coercion.Axiom
import GHC.Builtin.Names
import GHC.Data.Maybe
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Data.FastString.Env
import GHC.Types.FieldLabel
import GHC.Settings.Constants
import GHC.Utils.Misc
import GHC.Types.Unique.Set
import GHC.Unit.Module

import Language.Haskell.Syntax.Basic (FieldLabelString(..))

import qualified Data.Data as Data

{-
-----------------------------------------------
        Notes about type families
-----------------------------------------------

Note [Type synonym families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Type synonym families, also known as "type functions", map directly
  onto the type functions in FC:

        type family F a :: Type
        type instance F Int = Bool
        ..etc...

* Reply "yes" to isTypeFamilyTyCon, and isFamilyTyCon

* From the user's point of view (F Int) and Bool are simply
  equivalent types.

* A Haskell 98 type synonym is a degenerate form of a type synonym
  family.

* Type functions can't appear in the LHS of a type function:
        type instance F (F Int) = ...   -- BAD!

* Translation of type family decl:
        type family F a :: Type
  translates to
    a FamilyTyCon 'F', whose FamTyConFlav is OpenSynFamilyTyCon

        type family G a :: Type where
          G Int = Bool
          G Bool = Char
          G a = ()
  translates to
    a FamilyTyCon 'G', whose FamTyConFlav is ClosedSynFamilyTyCon, with the
    appropriate CoAxiom representing the equations

We also support injective type families -- see Note [Injective type families]

Note [Data type families]
~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [Wrappers for data instance tycons] in GHC.Types.Id.Make

* Data type families are declared thus
        data family T a :: Type
        data instance T Int = T1 | T2 Bool

  Here T is the "family TyCon".

* Reply "yes" to isDataFamilyTyCon, and isFamilyTyCon

* The user does not see any "equivalent types" as they did with type
  synonym families.  They just see constructors with types
        T1 :: T Int
        T2 :: Bool -> T Int

* Here's the FC version of the above declarations:

        data T a
        data R:TInt = T1 | T2 Bool
        axiom ax_ti : T Int ~R R:TInt

  Note that this is a *representational* coercion
  The R:TInt is the "representation TyCons".
  It has an AlgTyConFlav of
        DataFamInstTyCon T [Int] ax_ti

* The axiom ax_ti may be eta-reduced; see
  Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom

* Data family instances may have a different arity than the data family.
  See Note [Arity of data families] in GHC.Core.FamInstEnv

* The data constructor T2 has a wrapper (which is what the
  source-level "T2" invokes):

        $WT2 :: Bool -> T Int
        $WT2 b = T2 b `cast` sym ax_ti

* A data instance can declare a fully-fledged GADT:

        data instance T (a,b) where
          X1 :: T (Int,Bool)
          X2 :: a -> b -> T (a,b)

  Here's the FC version of the above declaration:

        data R:TPair a b where
          X1 :: R:TPair Int Bool
          X2 :: a -> b -> R:TPair a b
        axiom ax_pr :: T (a,b)  ~R  R:TPair a b

        $WX1 :: forall a b. a -> b -> T (a,b)
        $WX1 a b (x::a) (y::b) = X2 a b x y `cast` sym (ax_pr a b)

  The R:TPair are the "representation TyCons".
  We have a bit of work to do, to unpick the result types of the
  data instance declaration for T (a,b), to get the result type in the
  representation; e.g.  T (a,b) --> R:TPair a b

  The representation TyCon R:TList, has an AlgTyConFlav of

        DataFamInstTyCon T [(a,b)] ax_pr

* Notice that T is NOT translated to a FC type function; it just
  becomes a "data type" with no constructors, which can be coerced
  into R:TInt, R:TPair by the axioms.  These axioms
  axioms come into play when (and *only* when) you
        - use a data constructor
        - do pattern matching
  Rather like newtype, in fact

  As a result

  - T behaves just like a data type so far as decomposition is concerned

  - (T Int) is not implicitly converted to R:TInt during type inference.
    Indeed the latter type is unknown to the programmer.

  - There *is* an instance for (T Int) in the type-family instance
    environment, but it is looked up (via tcLookupDataFamilyInst)
    in can_eq_nc (via tcTopNormaliseNewTypeTF_maybe) when trying to
    solve representational equalities like
         T Int ~R# Bool
    Here we look up (T Int), convert it to R:TInt, and then unwrap the
    newtype R:TInt.

    It is also looked up in reduceTyFamApp_maybe.

  - It's fine to have T in the LHS of a type function:
    type instance F (T a) = [a]

  It was this last point that confused me!  The big thing is that you
  should not think of a data family T as a *type function* at all, not
  even an injective one!  We can't allow even injective type functions
  on the LHS of a type function:
        type family injective G a :: Type
        type instance F (G Int) = Bool
  is no good, even if G is injective, because consider
        type instance G Int = Bool
        type instance F Bool = Char

  So a data type family is not an injective type function. It's just a
  data type with some axioms that connect it to other data types.

* The tyConTyVars of the representation tycon are the tyvars that the
  user wrote in the patterns. This is important in GHC.Tc.Deriv, where we
  bring these tyvars into scope before type-checking the deriving
  clause. This fact is arranged for in TcInstDecls.tcDataFamInstDecl.

Note [Associated families and their parent class]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*Associated* families are just like *non-associated* families, except
that they have a famTcParent field of (Just cls_tc), which identifies the
parent class.

However there is an important sharing relationship between
  * the tyConTyVars of the parent Class
  * the tyConTyVars of the associated TyCon

   class C a b where
     data T p a
     type F a q b

Here the 'a' and 'b' are shared with the 'Class'; that is, they have
the same Unique.

This is important. In an instance declaration we expect
  * all the shared variables to be instantiated the same way
  * the non-shared variables of the associated type should not
    be instantiated at all

  instance C [x] (Tree y) where
     data T p [x] = T1 x | T2 p
     type F [x] q (Tree y) = (x,y,q)

Note [TyCon Role signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Every tycon has a role signature, assigning a role to each of the tyConTyVars
(or of equal length to the tyConArity, if there are no tyConTyVars). An
example demonstrates these best: say we have a tycon T, with parameters a at
nominal, b at representational, and c at phantom. Then, to prove
representational equality between T a1 b1 c1 and T a2 b2 c2, we need to have
nominal equality between a1 and a2, representational equality between b1 and
b2, and nothing in particular (i.e., phantom equality) between c1 and c2. This
might happen, say, with the following declaration:

  data T a b c where
    MkT :: b -> T Int b c

Data and class tycons have their roles inferred (see inferRoles in GHC.Tc.TyCl.Utils),
as do vanilla synonym tycons. Family tycons have all parameters at role N,
though it is conceivable that we could relax this restriction. (->)'s and
tuples' parameters are at role R. Each primitive tycon declares its roles;
it's worth noting that (~#)'s parameters are at role N. Promoted data
constructors' type arguments are at role R. All kind arguments are at role
N.

Note [Unboxed tuple RuntimeRep vars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The contents of an unboxed tuple may have any representation. Accordingly,
the kind of the unboxed tuple constructor is runtime-representation
polymorphic.

Type constructor (2 kind arguments)
   (#,#) :: forall (q :: RuntimeRep) (r :: RuntimeRep).
                   TYPE q -> TYPE r -> TYPE (TupleRep [q, r])
Data constructor (4 type arguments)
   (#,#) :: forall (q :: RuntimeRep) (r :: RuntimeRep)
                   (a :: TYPE q) (b :: TYPE r). a -> b -> (# a, b #)

These extra tyvars (q and r) cause some delicate processing around tuples,
where we need to manually insert RuntimeRep arguments.
The same situation happens with unboxed sums: each alternative
has its own RuntimeRep.
For boxed tuples, there is no representation polymorphism, and therefore
we add RuntimeReps only for the unboxed version.

Type constructor (no kind arguments)
   (,) :: Type -> Type -> Type
Data constructor (2 type arguments)
   (,) :: forall a b. a -> b -> (a, b)


Note [Injective type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We allow injectivity annotations for type families (both open and closed):

  type family F (a :: k) (b :: k) = r | r -> a
  type family G a b = res | res -> a b where ...

Injectivity information is stored in the `famTcInj` field of `FamilyTyCon`.
`famTcInj` maybe stores a list of Bools, where each entry corresponds to a
single element of `tyConTyVars` (both lists should have identical length). If no
injectivity annotation was provided `famTcInj` is Nothing. From this follows an
invariant that if `famTcInj` is a Just then at least one element in the list
must be True.

See also:
 * [Injectivity annotation] in GHC.Hs.Decls
 * [Renaming injectivity annotation] in GHC.Rename.Module
 * [Verifying injectivity annotation] in GHC.Core.FamInstEnv
 * [Type inference for type families with injectivity] in GHC.Tc.Solver.Equality

Note [Sharing nullary TyConApps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Nullary type constructor applications are extremely common. For this reason
each TyCon carries with it a @TyConApp tycon []@. This ensures that
'mkTyConTy' does not need to allocate and eliminates quite a bit of heap
residency. Furthermore, we use 'mkTyConTy' in the nullary case of 'mkTyConApp',
ensuring that this function also benefits from sharing.

This optimisation improves allocations in the Cabal test by around 0.3% and
decreased cache misses measurably.

See #19367.


************************************************************************
*                                                                      *
                    TyConBinder
*                                                                      *
************************************************************************
-}

type TyConBinder     = VarBndr TyVar   TyConBndrVis

data TyConBndrVis
  = NamedTCB ForAllTyFlag  -- ^ A named, forall-bound variable (invisible or not)
  | AnonTCB                -- ^ an ordinary, visible type argument

instance Outputable TyConBndrVis where
  ppr :: TyConBndrVis -> SDoc
ppr (NamedTCB ForAllTyFlag
flag) = ForAllTyFlag -> SDoc
forall a. Outputable a => a -> SDoc
ppr ForAllTyFlag
flag
  ppr TyConBndrVis
AnonTCB         = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"AnonTCB"

mkAnonTyConBinder :: TyVar -> TyConBinder
-- Make a visible anonymous TyCon binder
mkAnonTyConBinder :: TyVar -> TyConBinder
mkAnonTyConBinder TyVar
tv = Bool -> TyConBinder -> TyConBinder
forall a. HasCallStack => Bool -> a -> a
assert (TyVar -> Bool
isTyVar TyVar
tv) (TyConBinder -> TyConBinder) -> TyConBinder -> TyConBinder
forall a b. (a -> b) -> a -> b
$
                       TyVar -> TyConBndrVis -> TyConBinder
forall var argf. var -> argf -> VarBndr var argf
Bndr TyVar
tv TyConBndrVis
AnonTCB

mkAnonTyConBinders :: [TyVar] -> [TyConBinder]
mkAnonTyConBinders :: [TyVar] -> [TyConBinder]
mkAnonTyConBinders [TyVar]
tvs = (TyVar -> TyConBinder) -> [TyVar] -> [TyConBinder]
forall a b. (a -> b) -> [a] -> [b]
map TyVar -> TyConBinder
mkAnonTyConBinder [TyVar]
tvs

mkNamedTyConBinder :: ForAllTyFlag -> TyVar -> TyConBinder
-- The odd argument order supports currying
mkNamedTyConBinder :: ForAllTyFlag -> TyVar -> TyConBinder
mkNamedTyConBinder ForAllTyFlag
vis TyVar
tv = Bool -> TyConBinder -> TyConBinder
forall a. HasCallStack => Bool -> a -> a
assert (TyVar -> Bool
isTyVar TyVar
tv) (TyConBinder -> TyConBinder) -> TyConBinder -> TyConBinder
forall a b. (a -> b) -> a -> b
$
                            TyVar -> TyConBndrVis -> TyConBinder
forall var argf. var -> argf -> VarBndr var argf
Bndr TyVar
tv (ForAllTyFlag -> TyConBndrVis
NamedTCB ForAllTyFlag
vis)

mkNamedTyConBinders :: ForAllTyFlag -> [TyVar] -> [TyConBinder]
-- The odd argument order supports currying
mkNamedTyConBinders :: ForAllTyFlag -> [TyVar] -> [TyConBinder]
mkNamedTyConBinders ForAllTyFlag
vis [TyVar]
tvs = (TyVar -> TyConBinder) -> [TyVar] -> [TyConBinder]
forall a b. (a -> b) -> [a] -> [b]
map (ForAllTyFlag -> TyVar -> TyConBinder
mkNamedTyConBinder ForAllTyFlag
vis) [TyVar]
tvs

-- | Make a Required TyConBinder. It chooses between NamedTCB and
-- AnonTCB based on whether the tv is mentioned in the dependent set
mkRequiredTyConBinder :: TyCoVarSet  -- these are used dependently
                      -> TyVar
                      -> TyConBinder
mkRequiredTyConBinder :: TyCoVarSet -> TyVar -> TyConBinder
mkRequiredTyConBinder TyCoVarSet
dep_set TyVar
tv
  | TyVar
tv TyVar -> TyCoVarSet -> Bool
`elemVarSet` TyCoVarSet
dep_set = ForAllTyFlag -> TyVar -> TyConBinder
mkNamedTyConBinder ForAllTyFlag
Required TyVar
tv
  | Bool
otherwise               = TyVar -> TyConBinder
mkAnonTyConBinder TyVar
tv

tyConBinderForAllTyFlag :: TyConBinder -> ForAllTyFlag
tyConBinderForAllTyFlag :: TyConBinder -> ForAllTyFlag
tyConBinderForAllTyFlag (Bndr TyVar
_ TyConBndrVis
vis) = TyConBndrVis -> ForAllTyFlag
tyConBndrVisForAllTyFlag TyConBndrVis
vis

tyConBndrVisForAllTyFlag :: TyConBndrVis -> ForAllTyFlag
tyConBndrVisForAllTyFlag :: TyConBndrVis -> ForAllTyFlag
tyConBndrVisForAllTyFlag (NamedTCB ForAllTyFlag
vis) = ForAllTyFlag
vis
tyConBndrVisForAllTyFlag TyConBndrVis
AnonTCB        = ForAllTyFlag
Required

isNamedTyConBinder :: TyConBinder -> Bool
-- Identifies kind variables
-- E.g. data T k (a:k) = blah
-- Here 'k' is a NamedTCB, a variable used in the kind of other binders
isNamedTyConBinder :: TyConBinder -> Bool
isNamedTyConBinder (Bndr TyVar
_ (NamedTCB {})) = Bool
True
isNamedTyConBinder TyConBinder
_                      = Bool
False

isVisibleTyConBinder :: VarBndr tv TyConBndrVis -> Bool
-- Works for IfaceTyConBinder too
isVisibleTyConBinder :: forall tv. VarBndr tv TyConBndrVis -> Bool
isVisibleTyConBinder (Bndr tv
_ TyConBndrVis
tcb_vis) = TyConBndrVis -> Bool
isVisibleTcbVis TyConBndrVis
tcb_vis

isVisibleTcbVis :: TyConBndrVis -> Bool
isVisibleTcbVis :: TyConBndrVis -> Bool
isVisibleTcbVis (NamedTCB ForAllTyFlag
vis) = ForAllTyFlag -> Bool
isVisibleForAllTyFlag ForAllTyFlag
vis
isVisibleTcbVis TyConBndrVis
AnonTCB        = Bool
True

isInvisSpecTcbVis :: TyConBndrVis -> Bool
isInvisSpecTcbVis :: TyConBndrVis -> Bool
isInvisSpecTcbVis (NamedTCB ForAllTyFlag
Specified) = Bool
True
isInvisSpecTcbVis TyConBndrVis
_                    = Bool
False

isInvisibleTyConBinder :: VarBndr tv TyConBndrVis -> Bool
-- Works for IfaceTyConBinder too
isInvisibleTyConBinder :: forall tv. VarBndr tv TyConBndrVis -> Bool
isInvisibleTyConBinder VarBndr tv TyConBndrVis
tcb = Bool -> Bool
not (VarBndr tv TyConBndrVis -> Bool
forall tv. VarBndr tv TyConBndrVis -> Bool
isVisibleTyConBinder VarBndr tv TyConBndrVis
tcb)

-- Build the 'tyConKind' from the binders and the result kind.
-- Keep in sync with 'mkTyConKind' in GHC.Iface.Type.
mkTyConKind :: [TyConBinder] -> Kind -> Kind
mkTyConKind :: [TyConBinder] -> Kind -> Kind
mkTyConKind [TyConBinder]
bndrs Kind
res_kind = (TyConBinder -> Kind -> Kind) -> Kind -> [TyConBinder] -> Kind
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr TyConBinder -> Kind -> Kind
mk Kind
res_kind [TyConBinder]
bndrs
  where
    mk :: TyConBinder -> Kind -> Kind
    mk :: TyConBinder -> Kind -> Kind
mk (Bndr TyVar
tv (NamedTCB ForAllTyFlag
vis)) Kind
k = VarBndr TyVar ForAllTyFlag -> Kind -> Kind
mkForAllTy (TyVar -> ForAllTyFlag -> VarBndr TyVar ForAllTyFlag
forall var argf. var -> argf -> VarBndr var argf
Bndr TyVar
tv ForAllTyFlag
vis) Kind
k
    mk (Bndr TyVar
tv TyConBndrVis
AnonTCB)        Kind
k = FunTyFlag -> Kind -> Kind -> Kind
mkNakedFunTy FunTyFlag
FTF_T_T (TyVar -> Kind
varType TyVar
tv) Kind
k
    -- mkNakedFunTy: see Note [Naked FunTy] in GHC.Builtin.Types

-- | (mkTyConTy tc) returns (TyConApp tc [])
-- but arranges to share that TyConApp among all calls
-- See Note [Sharing nullary TyConApps]
-- So it's just an alias for tyConNullaryTy!
mkTyConTy :: TyCon -> Type
mkTyConTy :: TyCon -> Kind
mkTyConTy TyCon
tycon = TyCon -> Kind
tyConNullaryTy TyCon
tycon

tyConInvisTVBinders :: [TyConBinder]   -- From the TyCon
                    -> [InvisTVBinder] -- Suitable for the foralls of a term function
-- See Note [Building TyVarBinders from TyConBinders]
tyConInvisTVBinders :: [TyConBinder] -> [InvisTVBinder]
tyConInvisTVBinders [TyConBinder]
tc_bndrs
 = (TyConBinder -> InvisTVBinder) -> [TyConBinder] -> [InvisTVBinder]
forall a b. (a -> b) -> [a] -> [b]
map TyConBinder -> InvisTVBinder
mk_binder [TyConBinder]
tc_bndrs
 where
   mk_binder :: TyConBinder -> InvisTVBinder
mk_binder (Bndr TyVar
tv TyConBndrVis
tc_vis) = Specificity -> TyVar -> InvisTVBinder
forall vis. vis -> TyVar -> VarBndr TyVar vis
mkTyVarBinder Specificity
vis TyVar
tv
      where
        vis :: Specificity
vis = case TyConBndrVis
tc_vis of
                TyConBndrVis
AnonTCB                  -> Specificity
SpecifiedSpec
                NamedTCB ForAllTyFlag
Required        -> Specificity
SpecifiedSpec
                NamedTCB (Invisible Specificity
vis) -> Specificity
vis

-- Returns only tyvars, as covars are always inferred
tyConVisibleTyVars :: TyCon -> [TyVar]
tyConVisibleTyVars :: TyCon -> [TyVar]
tyConVisibleTyVars TyCon
tc
  = [ TyVar
tv | Bndr TyVar
tv TyConBndrVis
vis <- TyCon -> [TyConBinder]
tyConBinders TyCon
tc
         , TyConBndrVis -> Bool
isVisibleTcbVis TyConBndrVis
vis ]

{- Note [Building TyVarBinders from TyConBinders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We sometimes need to build the quantified type of a value from
the TyConBinders of a type or class.  For that we need not
TyConBinders but TyVarBinders (used in forall-type)  E.g:

 *  From   data T a = MkT (Maybe a)
    we are going to make a data constructor with type
           MkT :: forall a. Maybe a -> T a
    See the ForAllTyBinders passed to buildDataCon

 * From    class C a where { op :: a -> Maybe a }
   we are going to make a default method
           $dmop :: forall a. C a => a -> Maybe a
   See the ForAllTyBinders passed to mkSigmaTy in mkDefaultMethodType

Both of these are user-callable.  (NB: default methods are not callable
directly by the user but rather via the code generated by 'deriving',
which uses visible type application; see mkDefMethBind.)

Since they are user-callable we must get their type-argument visibility
information right; and that info is in the TyConBinders.
Here is an example:

  data App a b = MkApp (a b) -- App :: forall {k}. (k->Type) -> k -> Type

The TyCon has

  tyConTyBinders = [ Named (Bndr (k :: Type) Inferred), Anon (k->Type), Anon k ]

The TyConBinders for App line up with App's kind, given above.

But the DataCon MkApp has the type
  MkApp :: forall {k} (a:k->Type) (b:k). a b -> App k a b

That is, its ForAllTyBinders should be

  dataConUnivTyVarBinders = [ Bndr (k:Type)    Inferred
                            , Bndr (a:k->Type) Specified
                            , Bndr (b:k)    Specified ]

So tyConTyVarBinders converts TyCon's TyConBinders into TyVarBinders:
  - variable names from the TyConBinders
  - but changing Anon/Required to Specified

The last part about Required->Specified comes from this:
  data T k (a :: k) b = MkT (a b)
Here k is Required in T's kind, but we didn't have Required binders in
types of terms before the advent of the new, experimental RequiredTypeArguments
extension. So we historically changed Required to Specified when making MkT's PiTyBinders
and now continue to do so to avoid a breaking change.
-}


{- Note [The binders/kind/arity fields of a TyCon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All TyCons have this group of fields
  tyConBinders   :: [TyConBinder]
  tyConResKind   :: Kind
  tyConTyVars    :: [TyVar]   -- Cached = binderVars tyConBinders
                              --   NB: Currently (Aug 2018), TyCons that own this
                              --   field really only contain TyVars. So it is
                              --   [TyVar] instead of [TyCoVar].
  tyConKind      :: Kind      -- Cached = mkTyConKind tyConBinders tyConResKind
  tyConArity     :: Arity     -- Cached = length tyConBinders

They fit together like so:

* tyConBinders gives the telescope of type variables on the LHS of the
  type declaration.  For example:

    type App a (b :: k) = a b

  tyConBinders = [ Bndr (k::Type)   (NamedTCB Inferred)
                 , Bndr (a:k->Type) AnonTCB
                 , Bndr (b:k)    AnonTCB ]

  Note that there are three binders here, including the
  kind variable k.

  See Note [tyConBinders and lexical scoping]

* See Note [VarBndrs, ForAllTyBinders, TyConBinders, and visibility] in GHC.Core.TyCo.Rep
  for what the visibility flag means.

* Each TyConBinder in tyConBinders has a TyVar, and
  that TyVar may scope over some other part of the TyCon's definition. Eg
      type T a = a -> a
  we have
      tyConBinders = [ Bndr (a:Type) AnonTCB ]
      synTcRhs     = a -> a
  So the 'a' scopes over the synTcRhs

* From the tyConBinders and tyConResKind we can get the tyConKind
  E.g for our App example:
      App :: forall k. (k->Type) -> k -> Type

  We get a 'forall' in the kind for each NamedTCB, and an arrow
  for each AnonTCB

  tyConKind is the full kind of the TyCon, not just the result kind

* For type families, tyConArity is the arguments this TyCon must be
  applied to, to be considered saturated.  Here we mean "applied to in
  the actual Type", not surface syntax; i.e. including implicit kind
  variables.  So it's just (length tyConBinders)

* For an algebraic data type, or data instance, the tyConResKind is
  always (TYPE r); that is, the tyConBinders are enough to saturate
  the type constructor.  I'm not quite sure why we have this invariant,
  but it's enforced by splitTyConKind

Note [tyConBinders and lexical scoping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a TyCon, and a PolyTcTyCon, we obey the following rule:

   The Name of the TyConBinder is precisely
       the lexically scoped Name from the original declaration
       (precisely = both OccName and Unique)

For example,
   data T a (b :: wombat) = MkT
We will get tyConBinders of [k, wombat, a::k, b::wombat]
The 'k' is made up; the user didn't specify it.  But for the kind of 'b'
we must use 'wombat'.

Why do we have this invariant?

* Similarly, when typechecking default definitions for class methods, in
  GHC.Tc.TyCl.Class.tcClassDecl2, we only have the (final) Class available;
  but the variables bound in that class must be in scope.  Example (#19738):

    type P :: k -> Type
    data P a = MkP

    type T :: k -> Constraint
    class T (a :: j) where
      f :: P a
      f = MkP @j @a  -- 'j' must be in scope when we typecheck 'f'

* When typechecking `deriving` clauses for top-level data declarations, the
  tcTyConScopedTyVars are brought into scope in through the `di_scoped_tvs`
  field of GHC.Tc.Deriv.DerivInfo. Example (#16731):

    class C x1 x2

    type T :: a -> Type
    data T (x :: z) deriving (C z)

  When typechecking `C z`, we want `z` to map to `a`, which is exactly what the
  tcTyConScopedTyVars for T give us.
-}

instance OutputableBndr tv => Outputable (VarBndr tv TyConBndrVis) where
  ppr :: VarBndr tv TyConBndrVis -> SDoc
ppr (Bndr tv
v TyConBndrVis
bi) = TyConBndrVis -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyConBndrVis
bi SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc
parens (BindingSite -> tv -> SDoc
forall a. OutputableBndr a => BindingSite -> a -> SDoc
pprBndr BindingSite
LetBind tv
v)

instance Binary TyConBndrVis where
  put_ :: WriteBinHandle -> TyConBndrVis -> IO ()
put_ WriteBinHandle
bh TyConBndrVis
AnonTCB        = do { WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
0 }
  put_ WriteBinHandle
bh (NamedTCB ForAllTyFlag
vis) = do { WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
1; WriteBinHandle -> ForAllTyFlag -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh ForAllTyFlag
vis }

  get :: ReadBinHandle -> IO TyConBndrVis
get ReadBinHandle
bh = do { h <- ReadBinHandle -> IO Word8
getByte ReadBinHandle
bh
              ; case h of
                  Word8
0 -> TyConBndrVis -> IO TyConBndrVis
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return TyConBndrVis
AnonTCB
                  Word8
_ -> do { vis <- ReadBinHandle -> IO ForAllTyFlag
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh; return (NamedTCB vis) } }


{- *********************************************************************
*                                                                      *
               The TyCon type
*                                                                      *
************************************************************************
-}


-- | TyCons represent type constructors. Type constructors are introduced by
-- things such as:
--
-- 1) Data declarations: @data Foo = ...@ creates the @Foo@ type constructor of
--    kind @Type@
--
-- 2) Type synonyms: @type Foo = ...@ creates the @Foo@ type constructor
--
-- 3) Newtypes: @newtype Foo a = MkFoo ...@ creates the @Foo@ type constructor
--    of kind @Type -> Type@
--
-- 4) Class declarations: @class Foo where@ creates the @Foo@ type constructor
--    of kind @Constraint@
--
-- This data type also encodes a number of primitive, built in type constructors
-- such as those for function and tuple types.
--
-- If you edit this type, you may need to update the GHC formalism
-- See Note [GHC Formalism] in GHC.Core.Lint
data TyCon = TyCon {
        TyCon -> Unique
tyConUnique  :: !Unique,  -- ^ A Unique of this TyCon. Invariant:
                                  -- identical to Unique of Name stored in
                                  -- tyConName field.

        TyCon -> Name
tyConName    :: !Name,    -- ^ Name of the constructor

        -- See Note [The binders/kind/arity fields of a TyCon]
        TyCon -> [TyConBinder]
tyConBinders          :: [TyConBinder],   -- ^ Full binders
        TyCon -> Kind
tyConResKind          :: Kind,             -- ^ Result kind
        TyCon -> Bool
tyConHasClosedResKind :: Bool,

        -- Cached values
        TyCon -> [TyVar]
tyConTyVars    :: [TyVar],       -- ^ TyVar binders
        TyCon -> Kind
tyConKind      :: Kind,          -- ^ Kind of this TyCon
        TyCon -> Int
tyConArity     :: Arity,         -- ^ Arity
        TyCon -> Kind
tyConNullaryTy :: Type,          -- ^ A pre-allocated @TyConApp tycon []@

        TyCon -> [Role]
tyConRoles :: [Role],  -- ^ The role for each type variable
                               -- This list has length = tyConArity
                               -- See also Note [TyCon Role signatures]

        TyCon -> TyConDetails
tyConDetails :: !TyConDetails }

data TyConDetails =
  -- | Algebraic data types, from
  --     - @data@ declarations
  --     - @newtype@ declarations
  --     - data instance declarations
  --     - type instance declarations
  --     - the TyCon generated by a class declaration
  --     - boxed tuples
  --     - unboxed tuples
  --     - constraint tuples
  --     - unboxed sums
  -- Data/newtype/type /families/ are handled by 'FamilyTyCon'.
  -- See 'AlgTyConRhs' for more information.
    AlgTyCon {
              -- The tyConTyVars scope over:
              --
              -- 1. The 'algTcStupidTheta'
              -- 2. The cached types in algTyConRhs.NewTyCon
              -- 3. The family instance types if present
              --
              -- Note that it does /not/ scope over the data
              -- constructors.

        TyConDetails -> Maybe CType
tyConCType   :: Maybe CType,-- ^ The C type that should be used
                                    -- for this type when using the FFI
                                    -- and CAPI

        TyConDetails -> Bool
algTcGadtSyntax  :: Bool,   -- ^ Was the data type declared with GADT
                                    -- syntax?  If so, that doesn't mean it's a
                                    -- true GADT; only that the "where" form
                                    -- was used.  This field is used only to
                                    -- guide pretty-printing

        TyConDetails -> [Kind]
algTcStupidTheta :: [PredType], -- ^ The \"stupid theta\" for the data
                                        -- type (always empty for GADTs).  A
                                        -- \"stupid theta\" is the context to
                                        -- the left of an algebraic type
                                        -- declaration, e.g. @Eq a@ in the
                                        -- declaration @data Eq a => T a ...@.
                                        -- See @Note [The stupid context]@ in
                                        -- "GHC.Core.DataCon".

        TyConDetails -> AlgTyConRhs
algTcRhs    :: AlgTyConRhs, -- ^ Contains information about the
                                    -- data constructors of the algebraic type

        TyConDetails -> FieldLabelEnv
algTcFields :: FieldLabelEnv, -- ^ Maps a label to information
                                      -- about the field

        TyConDetails -> AlgTyConFlav
algTcFlavour :: AlgTyConFlav   -- ^ The flavour of this algebraic tycon.
                                       -- Gives the class or family declaration
                                       -- 'TyCon' for derived 'TyCon's representing
                                       -- class or family instances, respectively.

    }

  -- | Represents type synonyms
  | SynonymTyCon {
             -- tyConTyVars scope over: synTcRhs

        TyConDetails -> Kind
synTcRhs     :: Type,    -- ^ Contains information about the expansion
                                 -- of the synonym

        TyConDetails -> Bool
synIsTau     :: Bool,   -- True <=> the RHS of this synonym does not
                                 --          have any foralls, after expanding any
                                 --          nested synonyms
        TyConDetails -> Bool
synIsFamFree  :: Bool,   -- True <=> the RHS of this synonym does not mention
                                 --          any type synonym families (data families
                                 --          are fine), again after expanding any
                                 --          nested synonyms

        TyConDetails -> Bool
synIsForgetful :: Bool,  -- See Note [Forgetful type synonyms]
                                 -- True <=  at least one argument is not mentioned
                                 --          in the RHS (or is mentioned only under
                                 --          forgetful synonyms)
                                 -- Test is conservative, so True does not guarantee
                                 -- forgetfulness. False conveys definite information
                                 -- (definitely not forgetful); True is always safe.

        TyConDetails -> Bool
synIsConcrete :: Bool    -- True <= If 'tys' are concrete then the expansion
                                 --         of (S tys) is definitely concrete
                                 -- But False is always safe
    }

  -- | Represents families (both type and data)
  -- Argument roles are all Nominal
  | FamilyTyCon {
            -- tyConTyVars connect an associated family TyCon
            -- with its parent class; see GHC.Tc.Validity.checkConsistentFamInst

        TyConDetails -> Maybe Name
famTcResVar  :: Maybe Name,   -- ^ Name of result type variable, used
                                      -- for pretty-printing with --show-iface
                                      -- and for reifying TyCon in Template
                                      -- Haskell

        TyConDetails -> FamTyConFlav
famTcFlav    :: FamTyConFlav, -- ^ Type family flavour: open, closed,
                                      -- abstract, built-in. See comments for
                                      -- FamTyConFlav

        TyConDetails -> Maybe TyCon
famTcParent  :: Maybe TyCon,  -- ^ For *associated* type/data families
                                      -- The class tycon in which the family is declared
                                      -- See Note [Associated families and their parent class]

        TyConDetails -> Injectivity
famTcInj     :: Injectivity   -- ^ is this a type family injective in
                                      -- its type variables? Nothing if no
                                      -- injectivity annotation was given
    }

  -- | Primitive types; cannot be defined in Haskell. This includes
  -- the usual suspects (such as @Int#@) as well as foreign-imported
  -- types and kinds (@*@, @#@, and @?@)
  | PrimTyCon {
        TyConDetails -> Name
primRepName :: TyConRepName   -- ^ The 'Typeable' representation.
                                      -- A cached version of
                                      -- @'mkPrelTyConRepName' ('tyConName' tc)@.
    }

  -- | Represents promoted data constructor.
  -- The kind of a promoted data constructor is the *wrapper* type of
  -- the original data constructor. This type must not have constraints
  -- (as checked in GHC.Tc.Gen.HsType.tcTyVar).
  | PromotedDataCon {          -- See Note [Promoted data constructors]
        TyConDetails -> DataCon
dataCon       :: DataCon,   -- ^ Corresponding data constructor
        TyConDetails -> Name
tcRepName     :: TyConRepName,
        TyConDetails -> PromDataConInfo
promDcInfo    :: PromDataConInfo  -- ^ See comments with 'PromDataConInfo'
    }

  -- | These exist only during type-checking.
  -- See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon] in "GHC.Tc.TyCl"
  | TcTyCon {
          -- NB: the tyConArity of a TcTyCon must match
          -- the number of Required (positional, user-specified)
          -- arguments to the type constructor; see the use
          -- of tyConArity in generaliseTcTyCon

        TyConDetails -> [(Name, TyVar)]
tctc_scoped_tvs :: [(Name,TcTyVar)],
          -- ^ Scoped tyvars over the tycon's body
          -- The range is always a skolem or TcTyVar, be
          -- MonoTcTyCon only: see Note [Scoped tyvars in a TcTyCon]

        TyConDetails -> Bool
tctc_is_poly :: Bool, -- ^ Is this TcTyCon already generalized?
                              -- Used only to make zonking more efficient

        TyConDetails -> TyConFlavour TyCon
tctc_flavour :: TyConFlavour TyCon
                           -- ^ What sort of 'TyCon' this represents.
      }

{- Note [Scoped tyvars in a TcTyCon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The tcTyConScopedTyVars field records the lexicial-binding connection
between the original, user-specified Name (i.e. thing in scope) and
the TcTyVar that the Name is bound to.

Order *does* matter; the tcTyConScopedTyVars list consists of
     specified_tvs ++ required_tvs

where
   * specified ones first
   * required_tvs the same as tyConTyVars
   * tyConArity = length required_tvs

tcTyConScopedTyVars are used only for MonoTcTyCons, not PolyTcTyCons.
See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon] in GHC.Tc.TyCl

Note [Representation-polymorphic TyCons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To check for representation-polymorphism directly in the typechecker,
e.g. when using GHC.Tc.Utils.TcMType.checkTypeHasFixedRuntimeRep,
we need to compute whether a type has a syntactically fixed RuntimeRep,
as per Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete.

It's useful to have a quick way to check whether a saturated application
of a type constructor has a fixed RuntimeRep. That is, we want
to know, given a TyCon 'T' of arity 'n', does

  T a_1 ... a_n

always have a fixed RuntimeRep? That is, is it always the case
that this application has a kind of the form

  T a_1 ... a_n :: TYPE rep

in which 'rep' is a concrete 'RuntimeRep'?
('Concrete' in the sense of Note [The Concrete mechanism] in GHC.Tc.Utils.Concrete:
it contains no type-family applications or type variables.)

To answer this question, we have 'tcHasFixedRuntimeRep'.
If 'tcHasFixedRuntimeRep' returns 'True', it means we're sure that
every saturated application of `T` has a fixed RuntimeRep.
However, if it returns 'False', we don't know: perhaps some application might not
have a fixed RuntimeRep.

Examples:

  - For type families, we won't know in general whether an application
    will have a fixed RuntimeRep:

      type F :: k -> k
      type family F a where {..}

    `tcHasFixedRuntimeRep F = False'

  - For newtypes, we're usually OK:

      newtype N a b c = MkN Int

    No matter what arguments we apply `N` to, we always get something of
    kind `Type`, which has a fixed RuntimeRep.
    Thus `tcHasFixedRuntimeRep N = True`.

    However, with `-XUnliftedNewtypes`, we can have representation-polymorphic
    newtypes:

      type UN :: TYPE rep -> TYPE rep
      newtype UN a = MkUN a

    `tcHasFixedRuntimeRep UN = False`

    For example, `UN @Int8Rep Int8#` is represented by an 8-bit value,
    while `UN @LiftedRep Int` is represented by a heap pointer.

    To distinguish whether we are dealing with a representation-polymorphic newtype,
    we keep track of which situation we are in using the 'nt_fixed_rep'
    field of the 'NewTyCon' constructor of 'AlgTyConRhs', and read this field
    to compute 'tcHasFixedRuntimeRep'.

  - A similar story can be told for datatypes: we're usually OK,
    except with `-XUnliftedDatatypes` which allows for levity polymorphism,
    e.g.:

      type UC :: TYPE (BoxedRep l) -> TYPE (BoxedRep l)
      type UC a = MkUC a

    `tcHasFixedRuntimeRep UC = False`

    Here, we keep track of whether we are dealing with a levity-polymorphic
    unlifted datatype using the 'data_fixed_lev' field of the 'DataTyCon'
    constructor of 'AlgTyConRhs'.

    N.B.: technically, the representation of a datatype is fixed,
    as it is always a pointer. However, we currently require that we
    know the specific `RuntimeRep`: knowing that it's `BoxedRep l`
    for a type-variable `l` isn't enough. See #15532.
-}

-- | Represents right-hand-sides of 'TyCon's for algebraic types
data AlgTyConRhs

    -- | Says that we know nothing about this data type, except that
    -- it's represented by a pointer.  Used when we export a data type
    -- abstractly into an .hi file.
  = AbstractTyCon

    -- | Information about those 'TyCon's derived from a @data@
    -- declaration. This includes data types with no constructors at
    -- all.
  | DataTyCon {
        AlgTyConRhs -> [DataCon]
data_cons :: [DataCon],
                          -- ^ The data type constructors; can be empty if the
                          --   user declares the type to have no constructors
                          --
                          -- INVARIANT: Kept in order of increasing 'DataCon'
                          -- tag (see the tag assignment in mkTyConTagMap)
        AlgTyConRhs -> Int
data_cons_size :: Int,
                          -- ^ Cached value: length data_cons
        AlgTyConRhs -> Bool
is_enum :: Bool,  -- ^ Cached value: is this an enumeration type?
                          --   See Note [Enumeration types]
        AlgTyConRhs -> Bool
is_type_data :: Bool,
                        -- from a "type data" declaration
                        -- See Note [Type data declarations] in GHC.Rename.Module
        AlgTyConRhs -> Bool
data_fixed_lev :: Bool
                        -- ^ 'True' if the data type constructor has
                        -- a known, fixed levity when fully applied
                        -- to its arguments, False otherwise.
                        --
                        -- This can only be 'False' with UnliftedDatatypes,
                        -- e.g.
                        --
                        -- > data A :: TYPE (BoxedRep l) where { MkA :: Int -> A }
                        --
                        -- This boolean is cached to make it cheaper to check
                        -- for levity and representation-polymorphism in
                        -- tcHasFixedRuntimeRep.
    }

  | TupleTyCon {                   -- A boxed, unboxed, or constraint tuple
        AlgTyConRhs -> DataCon
data_con :: DataCon,       -- NB: it can be an *unboxed* tuple
        AlgTyConRhs -> TupleSort
tup_sort :: TupleSort      -- ^ Is this a boxed, unboxed or constraint
                                   -- tuple?
    }

  -- | An unboxed sum type.
  | SumTyCon {
        data_cons :: [DataCon],
        data_cons_size :: Int  -- ^ Cached value: length data_cons
    }

  -- | Information about those 'TyCon's derived from a @newtype@ declaration
  | NewTyCon {
        data_con :: DataCon,    -- ^ The unique constructor for the @newtype@.
                                --   It has no existentials

        AlgTyConRhs -> Kind
nt_rhs :: Type,         -- ^ Cached value: the argument type of the
                                -- constructor, which is just the representation
                                -- type of the 'TyCon' (remember that @newtype@s
                                -- do not exist at runtime so need a different
                                -- representation type).
                                --
                                -- The free 'TyVar's of this type are the
                                -- 'tyConTyVars' from the corresponding 'TyCon'

        AlgTyConRhs -> ([TyVar], Kind)
nt_etad_rhs :: ([TyVar], Type),
                        -- ^ Same as the 'nt_rhs', but this time eta-reduced.
                        -- Hence the list of 'TyVar's in this field may be
                        -- shorter than the declared arity of the 'TyCon'.

                        -- See Note [Newtype eta]
        AlgTyConRhs -> CoAxiom Unbranched
nt_co :: CoAxiom Unbranched,
                             -- The axiom coercion that creates the @newtype@
                             -- from the representation 'Type'.  The axiom witnesses
                             -- a representational coercion:
                             --   nt_co :: N ty1 ~R# rep_tys

                             -- See Note [Newtype coercions]
                             -- Invariant: arity = #tvs in nt_etad_rhs;
                             -- See Note [Newtype eta]
                             -- Watch out!  If any newtypes become transparent
                             -- again check #1072.
        AlgTyConRhs -> Bool
nt_fixed_rep :: Bool
                        -- ^ 'True' if the newtype has a known, fixed representation
                        -- when fully applied to its arguments, 'False' otherwise.
                        -- This can only ever be 'False' with UnliftedNewtypes.
                        --
                        -- Example:
                        --
                        -- > newtype N (a :: TYPE r) = MkN a
                        --
                        -- Invariant: nt_fixed_rep nt = tcHasFixedRuntimeRep (nt_rhs nt)
                        --
                        -- This boolean is cached to make it cheaper to check if a
                        -- variable binding is representation-polymorphic
                        -- in tcHasFixedRuntimeRep.
    }

mkSumTyConRhs :: [DataCon] -> AlgTyConRhs
mkSumTyConRhs :: [DataCon] -> AlgTyConRhs
mkSumTyConRhs [DataCon]
data_cons = [DataCon] -> Int -> AlgTyConRhs
SumTyCon [DataCon]
data_cons ([DataCon] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [DataCon]
data_cons)

-- | Create an 'AlgTyConRhs' from the data constructors,
-- for a potentially levity-polymorphic datatype (with `UnliftedDatatypes`).
mkLevPolyDataTyConRhs :: Bool -- ^ whether the 'DataCon' has a fixed levity
                      -> Bool -- ^ True if this is a "type data" declaration
                              -- See Note [Type data declarations]
                              -- in GHC.Rename.Module
                      -> [DataCon]
                      -> AlgTyConRhs
mkLevPolyDataTyConRhs :: Bool -> Bool -> [DataCon] -> AlgTyConRhs
mkLevPolyDataTyConRhs Bool
fixed_lev Bool
type_data [DataCon]
cons
  = DataTyCon {
        data_cons :: [DataCon]
data_cons = [DataCon]
cons,
        data_cons_size :: Int
data_cons_size = [DataCon] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [DataCon]
cons,
        is_enum :: Bool
is_enum = Bool -> Bool
not ([DataCon] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [DataCon]
cons) Bool -> Bool -> Bool
&& (DataCon -> Bool) -> [DataCon] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all DataCon -> Bool
is_enum_con [DataCon]
cons,
                  -- See Note [Enumeration types] in GHC.Core.TyCon
        is_type_data :: Bool
is_type_data = Bool
type_data,
        data_fixed_lev :: Bool
data_fixed_lev = Bool
fixed_lev
    }
  where
    is_enum_con :: DataCon -> Bool
is_enum_con DataCon
con
       | ([TyVar]
_univ_tvs, [TyVar]
ex_tvs, [EqSpec]
eq_spec, [Kind]
theta, [Scaled Kind]
arg_tys, Kind
_res)
           <- DataCon
-> ([TyVar], [TyVar], [EqSpec], [Kind], [Scaled Kind], Kind)
dataConFullSig DataCon
con
       = [TyVar] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyVar]
ex_tvs Bool -> Bool -> Bool
&& [EqSpec] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [EqSpec]
eq_spec Bool -> Bool -> Bool
&& [Kind] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Kind]
theta Bool -> Bool -> Bool
&& [Scaled Kind] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Scaled Kind]
arg_tys

-- | Create an 'AlgTyConRhs' from the data constructors.
--
-- Use 'mkLevPolyDataConRhs' if the datatype can be levity-polymorphic
-- or if it comes from a "data type" declaration
mkDataTyConRhs :: [DataCon] -> AlgTyConRhs
mkDataTyConRhs :: [DataCon] -> AlgTyConRhs
mkDataTyConRhs = Bool -> Bool -> [DataCon] -> AlgTyConRhs
mkLevPolyDataTyConRhs Bool
True Bool
False

-- | Some promoted datacons signify extra info relevant to GHC. For example,
-- the `IntRep` constructor of `RuntimeRep` corresponds to the 'IntRep'
-- constructor of 'PrimRep'. This data structure allows us to store this
-- information right in the 'TyCon'. The other approach would be to look
-- up things like `RuntimeRep`'s `PrimRep` by known-key every time.
-- See also Note [Getting from RuntimeRep to PrimRep] in "GHC.Types.RepType"
data PromDataConInfo
  = NoPromInfo       -- ^ an ordinary promoted data con
  | RuntimeRep ([Type] -> [PrimRep])
      -- ^ A constructor of `RuntimeRep`. The argument to the function should
      -- be the list of arguments to the promoted datacon.

  | VecCount Int         -- ^ A constructor of `VecCount`

  | VecElem PrimElemRep  -- ^ A constructor of `VecElem`

  | Levity Levity        -- ^ A constructor of `Levity`

-- | Extract those 'DataCon's that we are able to learn about.  Note
-- that visibility in this sense does not correspond to visibility in
-- the context of any particular user program!
visibleDataCons :: AlgTyConRhs -> [DataCon]
visibleDataCons :: AlgTyConRhs -> [DataCon]
visibleDataCons (AbstractTyCon {})            = []
visibleDataCons (DataTyCon{ data_cons :: AlgTyConRhs -> [DataCon]
data_cons = [DataCon]
cs }) = [DataCon]
cs
visibleDataCons (NewTyCon{ data_con :: AlgTyConRhs -> DataCon
data_con = DataCon
c })    = [DataCon
c]
visibleDataCons (TupleTyCon{ data_con :: AlgTyConRhs -> DataCon
data_con = DataCon
c })  = [DataCon
c]
visibleDataCons (SumTyCon{ data_cons :: AlgTyConRhs -> [DataCon]
data_cons = [DataCon]
cs })  = [DataCon]
cs

-- | Describes the flavour of an algebraic type constructor. For
-- classes and data families, this flavour includes a reference to
-- the parent 'TyCon'.
data AlgTyConFlav
  = -- | An ordinary algebraic type constructor. This includes unlifted and
    -- representation-polymorphic datatypes and newtypes and unboxed tuples,
    -- but NOT unboxed sums; see UnboxedSumTyCon.
    VanillaAlgTyCon
       TyConRepName   -- For Typeable

    -- | An unboxed sum type constructor. This is distinct from VanillaAlgTyCon
    -- because we currently don't allow unboxed sums to be Typeable since
    -- there are too many of them. See #13276.
  | UnboxedSumTyCon

  -- | Type constructors representing a class dictionary.
  -- See Note [ATyCon for classes] in "GHC.Core.TyCo.Rep"
  | ClassTyCon
        Class           -- INVARIANT: the classTyCon of this Class is the
                        -- current tycon
        TyConRepName

  -- | Type constructors representing an *instance* of a *data* family.
  -- Parameters:
  --
  --  1) The type family in question
  --
  --  2) Instance types; free variables are the 'tyConTyVars'
  --  of the current 'TyCon' (not the family one). INVARIANT:
  --  the number of types matches the arity of the family 'TyCon'
  --
  --  3) A 'CoTyCon' identifying the representation
  --  type with the type instance family
  | DataFamInstTyCon          -- See Note [Data type families]
        (CoAxiom Unbranched)  -- The coercion axiom.
               -- A *Representational* coercion,
               -- of kind   T ty1 ty2   ~R   R:T a b c
               -- where T is the family TyCon,
               -- and R:T is the representation TyCon (ie this one)
               -- and a,b,c are the tyConTyVars of this TyCon
               --
               -- BUT may be eta-reduced; see
               --     Note [Eta reduction for data families] in
               --     GHC.Core.Coercion.Axiom

          -- Cached fields of the CoAxiom, but adjusted to
          -- use the tyConTyVars of this TyCon
        TyCon   -- The family TyCon
        [Type]  -- Argument types (mentions the tyConTyVars of this TyCon)
                -- No shorter in length than the tyConTyVars of the family TyCon
                -- How could it be longer? See [Arity of data families] in GHC.Core.FamInstEnv

        -- E.g.  data instance T [a] = ...
        -- gives a representation tycon:
        --      data R:TList a = ...
        --      axiom co a :: T [a] ~ R:TList a
        -- with R:TList's algTcFlavour = DataFamInstTyCon T [a] co

instance Outputable AlgTyConFlav where
    ppr :: AlgTyConFlav -> SDoc
ppr (VanillaAlgTyCon {})        = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Vanilla ADT"
    ppr (UnboxedSumTyCon {})        = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Unboxed sum"
    ppr (ClassTyCon Class
cls Name
_)          = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Class parent" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Class -> SDoc
forall a. Outputable a => a -> SDoc
ppr Class
cls
    ppr (DataFamInstTyCon CoAxiom Unbranched
_ TyCon
tc [Kind]
tys) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Family parent (family instance)"
                                      SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> [SDoc] -> SDoc
forall doc. IsLine doc => [doc] -> doc
sep ((Kind -> SDoc) -> [Kind] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Kind -> SDoc
pprType [Kind]
tys)

-- | Checks the invariants of a 'AlgTyConFlav' given the appropriate type class
-- name, if any
okParent :: Name -> AlgTyConFlav -> Bool
okParent :: Name -> AlgTyConFlav -> Bool
okParent Name
_       (VanillaAlgTyCon {})            = Bool
True
okParent Name
_       (UnboxedSumTyCon {})            = Bool
True
okParent Name
tc_name (ClassTyCon Class
cls Name
_)              = Name
tc_name Name -> Name -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon -> Name
tyConName (Class -> TyCon
classTyCon Class
cls)
okParent Name
_       (DataFamInstTyCon CoAxiom Unbranched
_ TyCon
fam_tc [Kind]
tys) = [Kind]
tys [Kind] -> Int -> Bool
forall a. [a] -> Int -> Bool
`lengthAtLeast` TyCon -> Int
tyConArity TyCon
fam_tc

isNoParent :: AlgTyConFlav -> Bool
isNoParent :: AlgTyConFlav -> Bool
isNoParent (VanillaAlgTyCon {}) = Bool
True
isNoParent AlgTyConFlav
_                   = Bool
False

--------------------

data Injectivity
  = NotInjective
  | Injective [Bool]   -- 1-1 with tyConTyVars (incl kind vars)
  deriving( Injectivity -> Injectivity -> Bool
(Injectivity -> Injectivity -> Bool)
-> (Injectivity -> Injectivity -> Bool) -> Eq Injectivity
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: Injectivity -> Injectivity -> Bool
== :: Injectivity -> Injectivity -> Bool
$c/= :: Injectivity -> Injectivity -> Bool
/= :: Injectivity -> Injectivity -> Bool
Eq )

-- | Information pertaining to the expansion of a type synonym (@type@)
data FamTyConFlav
  = -- | Represents an open type family without a fixed right hand
    -- side.  Additional instances can appear at any time.
    --
    -- These are introduced by either a top level declaration:
    --
    -- > data family T a :: Type
    --
    -- Or an associated data type declaration, within a class declaration:
    --
    -- > class C a b where
    -- >   data T b :: Type
     DataFamilyTyCon
       TyConRepName

     -- | An open type synonym family  e.g. @type family F x y :: Type -> Type@
   | OpenSynFamilyTyCon

   -- | A closed type synonym family  e.g.
   -- @type family F x where { F Int = Bool }@
   | ClosedSynFamilyTyCon (Maybe (CoAxiom Branched))
     -- See Note [Closed type families]

   -- | A closed type synonym family declared in an hs-boot file with
   -- type family F a where ..
   | AbstractClosedSynFamilyTyCon

   -- | Built-in type family used by the TypeNats solver
   | BuiltInSynFamTyCon BuiltInSynFamily

instance Outputable FamTyConFlav where
    ppr :: FamTyConFlav -> SDoc
ppr (DataFamilyTyCon Name
n) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"data family" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr Name
n
    ppr FamTyConFlav
OpenSynFamilyTyCon = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"open type family"
    ppr (ClosedSynFamilyTyCon Maybe (CoAxiom Branched)
Nothing) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"closed type family"
    ppr (ClosedSynFamilyTyCon (Just CoAxiom Branched
coax)) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"closed type family" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> CoAxiom Branched -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoAxiom Branched
coax
    ppr FamTyConFlav
AbstractClosedSynFamilyTyCon = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"abstract closed type family"
    ppr (BuiltInSynFamTyCon BuiltInSynFamily
_) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"built-in type family"

{- Note [Closed type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* In an open type family you can add new instances later.  This is the
  usual case.

* In a closed type family you can only put equations where the family
  is defined.

A non-empty closed type family has a single axiom with multiple
branches, stored in the 'ClosedSynFamilyTyCon' constructor.  A closed
type family with no equations does not have an axiom, because there is
nothing for the axiom to prove!


Note [Promoted data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All data constructors can be promoted to become a type constructor,
via the PromotedDataCon alternative in GHC.Core.TyCon.

* The TyCon promoted from a DataCon has the *same* Name and Unique as
  the DataCon.  Eg. If the data constructor Data.Maybe.Just(unique 78)
  is promoted to a TyCon whose name is      Data.Maybe.Just(unique 78)

* We promote the *user* type of the DataCon.  Eg
     data T = MkT {-# UNPACK #-} !(Bool, Bool)
  The promoted kind is
     'MkT :: (Bool,Bool) -> T
  *not*
     'MkT :: Bool -> Bool -> T

* Similarly for GADTs:
     data G a where
       MkG :: forall b. b -> G [b]
  The promoted data constructor has kind
       'MkG :: forall b. b -> G [b]
  *not*
       'MkG :: forall a b. (a ~# [b]) => b -> G a

Note [Enumeration types]
~~~~~~~~~~~~~~~~~~~~~~~~
We define datatypes with no constructors to *not* be
enumerations; this fixes #2578,  Otherwise we
end up generating an empty table for
  <mod>_<type>_closure_tbl
which is used by tagToEnum# to map Int# to constructors
in an enumeration. The empty table apparently upset
the linker.

Moreover, all the data constructor must be enumerations, meaning
they have type  (forall abc. T a b c).  GADTs are not enumerations.
For example consider
    data T a where
      T1 :: T Int
      T2 :: T Bool
      T3 :: T a
What would [T1 ..] be?  [T1,T3] :: T Int? Easiest thing is to exclude them.
See #4528.

Note [Newtype coercions]
~~~~~~~~~~~~~~~~~~~~~~~~
The NewTyCon field nt_co is a CoAxiom which is used for coercing from
the representation type of the newtype, to the newtype itself. For
example,

   newtype T a = MkT (a -> a)

the NewTyCon for T will contain nt_co = CoT where CoT :: forall a. T a ~ a -> a.

We might also eta-contract the axiom: see Note [Newtype eta].

Note [Newtype eta]
~~~~~~~~~~~~~~~~~~
Consider
        newtype Parser a = MkParser (IO a) deriving Monad
Are these two types equal? That is, does a coercion exist between them?
        Monad Parser
        Monad IO
(We need this coercion to make the derived instance for Monad Parser.)

Well, yes.  But to see that easily we eta-reduce the RHS type of
Parser, in this case to IO, so that even unsaturated applications of
Parser will work right.  So instead of
   axParser :: forall a. Parser a ~ IO a
we generate an eta-reduced axiom
   axParser :: Parser ~ IO

This eta reduction is done when the type constructor is built, in
GHC.Tc.TyCl.Build.mkNewTyConRhs, and cached in NewTyCon.

Here's an example that I think showed up in practice.
Source code:
        newtype T a = MkT [a]
        newtype Foo m = MkFoo (forall a. m a -> Int)

        w1 :: Foo []
        w1 = ...

        w2 :: Foo T
        w2 = MkFoo (\(MkT x) -> case w1 of MkFoo f -> f x)

After desugaring, and discarding the data constructors for the newtypes,
we would like to get:
        w2 = w1 `cast` Foo axT

so that w2 and w1 share the same code. To do this, the coercion axiom
axT must have
        kind:    axT :: T ~ []
 and    arity:   0

See also Note [Newtype eta and homogeneous axioms] in GHC.Tc.TyCl.Build.

************************************************************************
*                                                                      *
                 TyConRepName
*                                                                      *
********************************************************************* -}

type TyConRepName = Name
   -- The Name of the top-level declaration for the Typeable world
   --    $tcMaybe :: Data.Typeable.Internal.TyCon
   --    $tcMaybe = TyCon { tyConName = "Maybe", ... }

tyConRepName_maybe :: TyCon -> Maybe TyConRepName
tyConRepName_maybe :: TyCon -> Maybe Name
tyConRepName_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details }) = TyConDetails -> Maybe Name
get_rep_nm TyConDetails
details
  where
    get_rep_nm :: TyConDetails -> Maybe Name
get_rep_nm (PrimTyCon  { primRepName :: TyConDetails -> Name
primRepName = Name
rep_nm })
      = Name -> Maybe Name
forall a. a -> Maybe a
Just Name
rep_nm
    get_rep_nm (AlgTyCon { algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = AlgTyConFlav
parent })
      = case AlgTyConFlav
parent of
           VanillaAlgTyCon Name
rep_nm -> Name -> Maybe Name
forall a. a -> Maybe a
Just Name
rep_nm
           AlgTyConFlav
UnboxedSumTyCon        -> Maybe Name
forall a. Maybe a
Nothing
           ClassTyCon Class
_ Name
rep_nm    -> Name -> Maybe Name
forall a. a -> Maybe a
Just Name
rep_nm
           DataFamInstTyCon {}    -> Maybe Name
forall a. Maybe a
Nothing
    get_rep_nm (FamilyTyCon { famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = DataFamilyTyCon Name
rep_nm })
      = Name -> Maybe Name
forall a. a -> Maybe a
Just Name
rep_nm
    get_rep_nm (PromotedDataCon { dataCon :: TyConDetails -> DataCon
dataCon = DataCon
dc, tcRepName :: TyConDetails -> Name
tcRepName = Name
rep_nm })
      | DataCon -> Bool
isUnboxedSumDataCon DataCon
dc   -- see #13276
      = Maybe Name
forall a. Maybe a
Nothing
      | Bool
otherwise
      = Name -> Maybe Name
forall a. a -> Maybe a
Just Name
rep_nm
    get_rep_nm TyConDetails
_ = Maybe Name
forall a. Maybe a
Nothing

-- | Make a 'Name' for the 'Typeable' representation of the given wired-in type
mkPrelTyConRepName :: Name -> TyConRepName
-- See Note [Grand plan for Typeable] in "GHC.Tc.Instance.Typeable".
mkPrelTyConRepName :: Name -> Name
mkPrelTyConRepName Name
tc_name  -- Prelude tc_name is always External,
                            -- so nameModule will work
  = Unique -> Module -> OccName -> SrcSpan -> Name
mkExternalName Unique
rep_uniq Module
rep_mod OccName
rep_occ (Name -> SrcSpan
nameSrcSpan Name
tc_name)
  where
    name_occ :: OccName
name_occ  = Name -> OccName
nameOccName Name
tc_name
    name_mod :: Module
name_mod  = HasDebugCallStack => Name -> Module
Name -> Module
nameModule  Name
tc_name
    name_uniq :: Unique
name_uniq = Name -> Unique
nameUnique  Name
tc_name
    rep_uniq :: Unique
rep_uniq | OccName -> Bool
isTcOcc OccName
name_occ = Unique -> Unique
tyConRepNameUnique   Unique
name_uniq
             | Bool
otherwise        = Unique -> Unique
dataConTyRepNameUnique Unique
name_uniq
    (Module
rep_mod, OccName
rep_occ) = Module -> OccName -> (Module, OccName)
tyConRepModOcc Module
name_mod OccName
name_occ

-- | The name (and defining module) for the Typeable representation (TyCon) of a
-- type constructor.
--
-- See Note [Grand plan for Typeable] in "GHC.Tc.Instance.Typeable".
tyConRepModOcc :: Module -> OccName -> (Module, OccName)
tyConRepModOcc :: Module -> OccName -> (Module, OccName)
tyConRepModOcc Module
tc_module OccName
tc_occ = (Module
rep_module, OccName -> OccName
mkTyConRepOcc OccName
tc_occ)
  where
    rep_module :: Module
rep_module
      | Module
tc_module Module -> Module -> Bool
forall a. Eq a => a -> a -> Bool
== Module
gHC_PRIM = Module
gHC_TYPES
      | Bool
otherwise             = Module
tc_module


{- *********************************************************************
*                                                                      *
                 PrimRep
*                                                                      *
************************************************************************

Note [rep swamp]
~~~~~~~~~~~~~~~~
GHC has a rich selection of types that represent "primitive types" of
one kind or another.  Each of them makes a different set of
distinctions, and mostly the differences are for good reasons,
although it's probably true that we could merge some of these.

Roughly in order of "includes more information":

 - A Width ("GHC.Cmm.Type") is simply a binary value with the specified
   number of bits.  It may represent a signed or unsigned integer, a
   floating-point value, or an address.

    data Width = W8 | W16 | W32 | W64  | W128

 - Size, which is used in the native code generator, is Width +
   floating point information.

   data Size = II8 | II16 | II32 | II64 | FF32 | FF64

   it is necessary because e.g. the instruction to move a 64-bit float
   on x86 (movsd) is different from the instruction to move a 64-bit
   integer (movq), so the mov instruction is parameterised by Size.

 - CmmType wraps Width with more information: GC ptr, float, or
   other value.

    data CmmType = CmmType CmmCat Width

    data CmmCat     -- "Category" (not exported)
       = GcPtrCat   -- GC pointer
       | BitsCat    -- Non-pointer
       | FloatCat   -- Float

   It is important to have GcPtr information in Cmm, since we generate
   info tables containing pointerhood for the GC from this.  As for
   why we have float (and not signed/unsigned) here, see Note [Signed
   vs unsigned].

 - ArgRep makes only the distinctions necessary for the call and
   return conventions of the STG machine.  It is essentially CmmType
   + void.

 - PrimRep makes a few more distinctions than ArgRep: it divides
   non-GC-pointers into signed/unsigned and addresses, information
   that is necessary for passing these values to foreign functions.

There's another tension here: whether the type encodes its size in
bytes, or whether its size depends on the machine word size.  Width
and CmmType have the size built-in, whereas ArgRep and PrimRep do not.

This means to turn an ArgRep/PrimRep into a CmmType requires DynFlags.

On the other hand, CmmType includes some "nonsense" values, such as
CmmType GcPtrCat W32 on a 64-bit machine.

The PrimRep type is closely related to the user-visible RuntimeRep type.
See Note [RuntimeRep and PrimRep] in GHC.Types.RepType.

-}


-- | A 'PrimRep' is an abstraction of a /non-void/ type.
-- (Use 'PrimRepOrVoidRep' if you want void types too.)
-- It contains information that the code generator needs
-- in order to pass arguments, return results,
-- and store values of this type. See also Note [RuntimeRep and PrimRep] in
-- "GHC.Types.RepType" and Note [VoidRep] in "GHC.Types.RepType".
data PrimRep
-- Unpacking of sum types is only supported since 9.6.1
  = BoxedRep {-# UNPACK #-} !(Maybe Levity) -- ^ Boxed, heap value
  | Int8Rep       -- ^ Signed, 8-bit value
  | Int16Rep      -- ^ Signed, 16-bit value
  | Int32Rep      -- ^ Signed, 32-bit value
  | Int64Rep      -- ^ Signed, 64 bit value
  | IntRep        -- ^ Signed, word-sized value
  | Word8Rep      -- ^ Unsigned, 8 bit value
  | Word16Rep     -- ^ Unsigned, 16 bit value
  | Word32Rep     -- ^ Unsigned, 32 bit value
  | Word64Rep     -- ^ Unsigned, 64 bit value
  | WordRep       -- ^ Unsigned, word-sized value
  | AddrRep       -- ^ A pointer, but /not/ to a Haskell value (use 'BoxedRep')
  | FloatRep
  | DoubleRep
  | VecRep Int PrimElemRep  -- ^ A vector
  deriving( Typeable PrimRep
Typeable PrimRep =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> PrimRep -> c PrimRep)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c PrimRep)
-> (PrimRep -> Constr)
-> (PrimRep -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c PrimRep))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PrimRep))
-> ((forall b. Data b => b -> b) -> PrimRep -> PrimRep)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> PrimRep -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> PrimRep -> r)
-> (forall u. (forall d. Data d => d -> u) -> PrimRep -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> PrimRep -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> PrimRep -> m PrimRep)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PrimRep -> m PrimRep)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PrimRep -> m PrimRep)
-> Data PrimRep
PrimRep -> Constr
PrimRep -> DataType
(forall b. Data b => b -> b) -> PrimRep -> PrimRep
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> PrimRep -> u
forall u. (forall d. Data d => d -> u) -> PrimRep -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimRep -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimRep -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimRep -> m PrimRep
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimRep -> m PrimRep
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimRep
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimRep -> c PrimRep
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimRep)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PrimRep)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimRep -> c PrimRep
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimRep -> c PrimRep
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimRep
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimRep
$ctoConstr :: PrimRep -> Constr
toConstr :: PrimRep -> Constr
$cdataTypeOf :: PrimRep -> DataType
dataTypeOf :: PrimRep -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimRep)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimRep)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PrimRep)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PrimRep)
$cgmapT :: (forall b. Data b => b -> b) -> PrimRep -> PrimRep
gmapT :: (forall b. Data b => b -> b) -> PrimRep -> PrimRep
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimRep -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimRep -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimRep -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimRep -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> PrimRep -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> PrimRep -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PrimRep -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PrimRep -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimRep -> m PrimRep
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimRep -> m PrimRep
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimRep -> m PrimRep
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimRep -> m PrimRep
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimRep -> m PrimRep
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimRep -> m PrimRep
Data.Data, PrimRep -> PrimRep -> Bool
(PrimRep -> PrimRep -> Bool)
-> (PrimRep -> PrimRep -> Bool) -> Eq PrimRep
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: PrimRep -> PrimRep -> Bool
== :: PrimRep -> PrimRep -> Bool
$c/= :: PrimRep -> PrimRep -> Bool
/= :: PrimRep -> PrimRep -> Bool
Eq, Eq PrimRep
Eq PrimRep =>
(PrimRep -> PrimRep -> Ordering)
-> (PrimRep -> PrimRep -> Bool)
-> (PrimRep -> PrimRep -> Bool)
-> (PrimRep -> PrimRep -> Bool)
-> (PrimRep -> PrimRep -> Bool)
-> (PrimRep -> PrimRep -> PrimRep)
-> (PrimRep -> PrimRep -> PrimRep)
-> Ord PrimRep
PrimRep -> PrimRep -> Bool
PrimRep -> PrimRep -> Ordering
PrimRep -> PrimRep -> PrimRep
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: PrimRep -> PrimRep -> Ordering
compare :: PrimRep -> PrimRep -> Ordering
$c< :: PrimRep -> PrimRep -> Bool
< :: PrimRep -> PrimRep -> Bool
$c<= :: PrimRep -> PrimRep -> Bool
<= :: PrimRep -> PrimRep -> Bool
$c> :: PrimRep -> PrimRep -> Bool
> :: PrimRep -> PrimRep -> Bool
$c>= :: PrimRep -> PrimRep -> Bool
>= :: PrimRep -> PrimRep -> Bool
$cmax :: PrimRep -> PrimRep -> PrimRep
max :: PrimRep -> PrimRep -> PrimRep
$cmin :: PrimRep -> PrimRep -> PrimRep
min :: PrimRep -> PrimRep -> PrimRep
Ord, Int -> PrimRep -> ShowS
[PrimRep] -> ShowS
PrimRep -> String
(Int -> PrimRep -> ShowS)
-> (PrimRep -> String) -> ([PrimRep] -> ShowS) -> Show PrimRep
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Int -> PrimRep -> ShowS
showsPrec :: Int -> PrimRep -> ShowS
$cshow :: PrimRep -> String
show :: PrimRep -> String
$cshowList :: [PrimRep] -> ShowS
showList :: [PrimRep] -> ShowS
Show )

data PrimOrVoidRep = VoidRep | NVRep PrimRep
  -- See Note [VoidRep] in GHC.Types.RepType
  deriving (Typeable PrimOrVoidRep
Typeable PrimOrVoidRep =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> PrimOrVoidRep -> c PrimOrVoidRep)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c PrimOrVoidRep)
-> (PrimOrVoidRep -> Constr)
-> (PrimOrVoidRep -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c PrimOrVoidRep))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c PrimOrVoidRep))
-> ((forall b. Data b => b -> b) -> PrimOrVoidRep -> PrimOrVoidRep)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> PrimOrVoidRep -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> PrimOrVoidRep -> r)
-> (forall u. (forall d. Data d => d -> u) -> PrimOrVoidRep -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> PrimOrVoidRep -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep)
-> Data PrimOrVoidRep
PrimOrVoidRep -> Constr
PrimOrVoidRep -> DataType
(forall b. Data b => b -> b) -> PrimOrVoidRep -> PrimOrVoidRep
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> PrimOrVoidRep -> u
forall u. (forall d. Data d => d -> u) -> PrimOrVoidRep -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimOrVoidRep -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimOrVoidRep -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimOrVoidRep
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimOrVoidRep -> c PrimOrVoidRep
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimOrVoidRep)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PrimOrVoidRep)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimOrVoidRep -> c PrimOrVoidRep
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimOrVoidRep -> c PrimOrVoidRep
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimOrVoidRep
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimOrVoidRep
$ctoConstr :: PrimOrVoidRep -> Constr
toConstr :: PrimOrVoidRep -> Constr
$cdataTypeOf :: PrimOrVoidRep -> DataType
dataTypeOf :: PrimOrVoidRep -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimOrVoidRep)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimOrVoidRep)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PrimOrVoidRep)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PrimOrVoidRep)
$cgmapT :: (forall b. Data b => b -> b) -> PrimOrVoidRep -> PrimOrVoidRep
gmapT :: (forall b. Data b => b -> b) -> PrimOrVoidRep -> PrimOrVoidRep
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimOrVoidRep -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimOrVoidRep -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimOrVoidRep -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimOrVoidRep -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> PrimOrVoidRep -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> PrimOrVoidRep -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PrimOrVoidRep -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PrimOrVoidRep -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimOrVoidRep -> m PrimOrVoidRep
Data.Data, PrimOrVoidRep -> PrimOrVoidRep -> Bool
(PrimOrVoidRep -> PrimOrVoidRep -> Bool)
-> (PrimOrVoidRep -> PrimOrVoidRep -> Bool) -> Eq PrimOrVoidRep
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
== :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
$c/= :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
/= :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
Eq, Eq PrimOrVoidRep
Eq PrimOrVoidRep =>
(PrimOrVoidRep -> PrimOrVoidRep -> Ordering)
-> (PrimOrVoidRep -> PrimOrVoidRep -> Bool)
-> (PrimOrVoidRep -> PrimOrVoidRep -> Bool)
-> (PrimOrVoidRep -> PrimOrVoidRep -> Bool)
-> (PrimOrVoidRep -> PrimOrVoidRep -> Bool)
-> (PrimOrVoidRep -> PrimOrVoidRep -> PrimOrVoidRep)
-> (PrimOrVoidRep -> PrimOrVoidRep -> PrimOrVoidRep)
-> Ord PrimOrVoidRep
PrimOrVoidRep -> PrimOrVoidRep -> Bool
PrimOrVoidRep -> PrimOrVoidRep -> Ordering
PrimOrVoidRep -> PrimOrVoidRep -> PrimOrVoidRep
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: PrimOrVoidRep -> PrimOrVoidRep -> Ordering
compare :: PrimOrVoidRep -> PrimOrVoidRep -> Ordering
$c< :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
< :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
$c<= :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
<= :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
$c> :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
> :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
$c>= :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
>= :: PrimOrVoidRep -> PrimOrVoidRep -> Bool
$cmax :: PrimOrVoidRep -> PrimOrVoidRep -> PrimOrVoidRep
max :: PrimOrVoidRep -> PrimOrVoidRep -> PrimOrVoidRep
$cmin :: PrimOrVoidRep -> PrimOrVoidRep -> PrimOrVoidRep
min :: PrimOrVoidRep -> PrimOrVoidRep -> PrimOrVoidRep
Ord, Int -> PrimOrVoidRep -> ShowS
[PrimOrVoidRep] -> ShowS
PrimOrVoidRep -> String
(Int -> PrimOrVoidRep -> ShowS)
-> (PrimOrVoidRep -> String)
-> ([PrimOrVoidRep] -> ShowS)
-> Show PrimOrVoidRep
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Int -> PrimOrVoidRep -> ShowS
showsPrec :: Int -> PrimOrVoidRep -> ShowS
$cshow :: PrimOrVoidRep -> String
show :: PrimOrVoidRep -> String
$cshowList :: [PrimOrVoidRep] -> ShowS
showList :: [PrimOrVoidRep] -> ShowS
Show)

data PrimElemRep
  = Int8ElemRep
  | Int16ElemRep
  | Int32ElemRep
  | Int64ElemRep
  | Word8ElemRep
  | Word16ElemRep
  | Word32ElemRep
  | Word64ElemRep
  | FloatElemRep
  | DoubleElemRep
   deriving( Typeable PrimElemRep
Typeable PrimElemRep =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> PrimElemRep -> c PrimElemRep)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c PrimElemRep)
-> (PrimElemRep -> Constr)
-> (PrimElemRep -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c PrimElemRep))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c PrimElemRep))
-> ((forall b. Data b => b -> b) -> PrimElemRep -> PrimElemRep)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> PrimElemRep -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> PrimElemRep -> r)
-> (forall u. (forall d. Data d => d -> u) -> PrimElemRep -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> PrimElemRep -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep)
-> Data PrimElemRep
PrimElemRep -> Constr
PrimElemRep -> DataType
(forall b. Data b => b -> b) -> PrimElemRep -> PrimElemRep
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> PrimElemRep -> u
forall u. (forall d. Data d => d -> u) -> PrimElemRep -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimElemRep -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimElemRep -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimElemRep
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimElemRep -> c PrimElemRep
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimElemRep)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PrimElemRep)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimElemRep -> c PrimElemRep
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> PrimElemRep -> c PrimElemRep
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimElemRep
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c PrimElemRep
$ctoConstr :: PrimElemRep -> Constr
toConstr :: PrimElemRep -> Constr
$cdataTypeOf :: PrimElemRep -> DataType
dataTypeOf :: PrimElemRep -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimElemRep)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c PrimElemRep)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PrimElemRep)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c PrimElemRep)
$cgmapT :: (forall b. Data b => b -> b) -> PrimElemRep -> PrimElemRep
gmapT :: (forall b. Data b => b -> b) -> PrimElemRep -> PrimElemRep
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimElemRep -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> PrimElemRep -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimElemRep -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> PrimElemRep -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> PrimElemRep -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> PrimElemRep -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PrimElemRep -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> PrimElemRep -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> PrimElemRep -> m PrimElemRep
Data.Data, PrimElemRep -> PrimElemRep -> Bool
(PrimElemRep -> PrimElemRep -> Bool)
-> (PrimElemRep -> PrimElemRep -> Bool) -> Eq PrimElemRep
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: PrimElemRep -> PrimElemRep -> Bool
== :: PrimElemRep -> PrimElemRep -> Bool
$c/= :: PrimElemRep -> PrimElemRep -> Bool
/= :: PrimElemRep -> PrimElemRep -> Bool
Eq, Eq PrimElemRep
Eq PrimElemRep =>
(PrimElemRep -> PrimElemRep -> Ordering)
-> (PrimElemRep -> PrimElemRep -> Bool)
-> (PrimElemRep -> PrimElemRep -> Bool)
-> (PrimElemRep -> PrimElemRep -> Bool)
-> (PrimElemRep -> PrimElemRep -> Bool)
-> (PrimElemRep -> PrimElemRep -> PrimElemRep)
-> (PrimElemRep -> PrimElemRep -> PrimElemRep)
-> Ord PrimElemRep
PrimElemRep -> PrimElemRep -> Bool
PrimElemRep -> PrimElemRep -> Ordering
PrimElemRep -> PrimElemRep -> PrimElemRep
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: PrimElemRep -> PrimElemRep -> Ordering
compare :: PrimElemRep -> PrimElemRep -> Ordering
$c< :: PrimElemRep -> PrimElemRep -> Bool
< :: PrimElemRep -> PrimElemRep -> Bool
$c<= :: PrimElemRep -> PrimElemRep -> Bool
<= :: PrimElemRep -> PrimElemRep -> Bool
$c> :: PrimElemRep -> PrimElemRep -> Bool
> :: PrimElemRep -> PrimElemRep -> Bool
$c>= :: PrimElemRep -> PrimElemRep -> Bool
>= :: PrimElemRep -> PrimElemRep -> Bool
$cmax :: PrimElemRep -> PrimElemRep -> PrimElemRep
max :: PrimElemRep -> PrimElemRep -> PrimElemRep
$cmin :: PrimElemRep -> PrimElemRep -> PrimElemRep
min :: PrimElemRep -> PrimElemRep -> PrimElemRep
Ord, Int -> PrimElemRep -> ShowS
[PrimElemRep] -> ShowS
PrimElemRep -> String
(Int -> PrimElemRep -> ShowS)
-> (PrimElemRep -> String)
-> ([PrimElemRep] -> ShowS)
-> Show PrimElemRep
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Int -> PrimElemRep -> ShowS
showsPrec :: Int -> PrimElemRep -> ShowS
$cshow :: PrimElemRep -> String
show :: PrimElemRep -> String
$cshowList :: [PrimElemRep] -> ShowS
showList :: [PrimElemRep] -> ShowS
Show, Int -> PrimElemRep
PrimElemRep -> Int
PrimElemRep -> [PrimElemRep]
PrimElemRep -> PrimElemRep
PrimElemRep -> PrimElemRep -> [PrimElemRep]
PrimElemRep -> PrimElemRep -> PrimElemRep -> [PrimElemRep]
(PrimElemRep -> PrimElemRep)
-> (PrimElemRep -> PrimElemRep)
-> (Int -> PrimElemRep)
-> (PrimElemRep -> Int)
-> (PrimElemRep -> [PrimElemRep])
-> (PrimElemRep -> PrimElemRep -> [PrimElemRep])
-> (PrimElemRep -> PrimElemRep -> [PrimElemRep])
-> (PrimElemRep -> PrimElemRep -> PrimElemRep -> [PrimElemRep])
-> Enum PrimElemRep
forall a.
(a -> a)
-> (a -> a)
-> (Int -> a)
-> (a -> Int)
-> (a -> [a])
-> (a -> a -> [a])
-> (a -> a -> [a])
-> (a -> a -> a -> [a])
-> Enum a
$csucc :: PrimElemRep -> PrimElemRep
succ :: PrimElemRep -> PrimElemRep
$cpred :: PrimElemRep -> PrimElemRep
pred :: PrimElemRep -> PrimElemRep
$ctoEnum :: Int -> PrimElemRep
toEnum :: Int -> PrimElemRep
$cfromEnum :: PrimElemRep -> Int
fromEnum :: PrimElemRep -> Int
$cenumFrom :: PrimElemRep -> [PrimElemRep]
enumFrom :: PrimElemRep -> [PrimElemRep]
$cenumFromThen :: PrimElemRep -> PrimElemRep -> [PrimElemRep]
enumFromThen :: PrimElemRep -> PrimElemRep -> [PrimElemRep]
$cenumFromTo :: PrimElemRep -> PrimElemRep -> [PrimElemRep]
enumFromTo :: PrimElemRep -> PrimElemRep -> [PrimElemRep]
$cenumFromThenTo :: PrimElemRep -> PrimElemRep -> PrimElemRep -> [PrimElemRep]
enumFromThenTo :: PrimElemRep -> PrimElemRep -> PrimElemRep -> [PrimElemRep]
Enum )

instance Outputable PrimRep where
  ppr :: PrimRep -> SDoc
ppr PrimRep
r = String -> SDoc
forall doc. IsLine doc => String -> doc
text (PrimRep -> String
forall a. Show a => a -> String
show PrimRep
r)

instance Outputable PrimElemRep where
  ppr :: PrimElemRep -> SDoc
ppr PrimElemRep
r = String -> SDoc
forall doc. IsLine doc => String -> doc
text (PrimElemRep -> String
forall a. Show a => a -> String
show PrimElemRep
r)

instance Binary PrimRep where
  put_ :: WriteBinHandle -> PrimRep -> IO ()
put_ WriteBinHandle
bh (BoxedRep Maybe Levity
ml)  = case Maybe Levity
ml of
    -- cheaper storage of the levity than using
    -- the Binary (Maybe Levity) instance
    Maybe Levity
Nothing       -> WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
0
    Just Levity
Lifted   -> WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
1
    Just Levity
Unlifted -> WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
2
  put_ WriteBinHandle
bh PrimRep
Int8Rep        = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
3
  put_ WriteBinHandle
bh PrimRep
Int16Rep       = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
4
  put_ WriteBinHandle
bh PrimRep
Int32Rep       = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
5
  put_ WriteBinHandle
bh PrimRep
Int64Rep       = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
6
  put_ WriteBinHandle
bh PrimRep
IntRep         = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
7
  put_ WriteBinHandle
bh PrimRep
Word8Rep       = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
8
  put_ WriteBinHandle
bh PrimRep
Word16Rep      = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
9
  put_ WriteBinHandle
bh PrimRep
Word32Rep      = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
10
  put_ WriteBinHandle
bh PrimRep
Word64Rep      = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
11
  put_ WriteBinHandle
bh PrimRep
WordRep        = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
12
  put_ WriteBinHandle
bh PrimRep
AddrRep        = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
13
  put_ WriteBinHandle
bh PrimRep
FloatRep       = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
14
  put_ WriteBinHandle
bh PrimRep
DoubleRep      = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
15
  put_ WriteBinHandle
bh (VecRep Int
n PrimElemRep
per) = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
16 IO () -> IO () -> IO ()
forall a b. IO a -> IO b -> IO b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> WriteBinHandle -> Int -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh Int
n IO () -> IO () -> IO ()
forall a b. IO a -> IO b -> IO b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> WriteBinHandle -> PrimElemRep -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh PrimElemRep
per
  get :: ReadBinHandle -> IO PrimRep
get  ReadBinHandle
bh = do
    h <- ReadBinHandle -> IO Word8
getByte ReadBinHandle
bh
    case h of
      Word8
0  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (PrimRep -> IO PrimRep) -> PrimRep -> IO PrimRep
forall a b. (a -> b) -> a -> b
$ Maybe Levity -> PrimRep
BoxedRep Maybe Levity
forall a. Maybe a
Nothing
      Word8
1  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (PrimRep -> IO PrimRep) -> PrimRep -> IO PrimRep
forall a b. (a -> b) -> a -> b
$ Maybe Levity -> PrimRep
BoxedRep (Levity -> Maybe Levity
forall a. a -> Maybe a
Just Levity
Lifted)
      Word8
2  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (PrimRep -> IO PrimRep) -> PrimRep -> IO PrimRep
forall a b. (a -> b) -> a -> b
$ Maybe Levity -> PrimRep
BoxedRep (Levity -> Maybe Levity
forall a. a -> Maybe a
Just Levity
Unlifted)
      Word8
3  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
Int8Rep
      Word8
4  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
Int16Rep
      Word8
5  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
Int32Rep
      Word8
6  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
Int64Rep
      Word8
7  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
IntRep
      Word8
8  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
Word8Rep
      Word8
9  -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
Word16Rep
      Word8
10 -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
Word32Rep
      Word8
11 -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
Word64Rep
      Word8
12 -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
WordRep
      Word8
13 -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
AddrRep
      Word8
14 -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
FloatRep
      Word8
15 -> PrimRep -> IO PrimRep
forall a. a -> IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PrimRep
DoubleRep
      Word8
16 -> Int -> PrimElemRep -> PrimRep
VecRep (Int -> PrimElemRep -> PrimRep)
-> IO Int -> IO (PrimElemRep -> PrimRep)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadBinHandle -> IO Int
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh IO (PrimElemRep -> PrimRep) -> IO PrimElemRep -> IO PrimRep
forall a b. IO (a -> b) -> IO a -> IO b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ReadBinHandle -> IO PrimElemRep
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh
      Word8
_  -> String -> SDoc -> IO PrimRep
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"Binary:PrimRep" (Int -> SDoc
forall doc. IsLine doc => Int -> doc
int (Word8 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word8
h))

instance Binary PrimElemRep where
  put_ :: WriteBinHandle -> PrimElemRep -> IO ()
put_ WriteBinHandle
bh PrimElemRep
per = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh (Int -> Word8
forall a b. (Integral a, Num b) => a -> b
fromIntegral (PrimElemRep -> Int
forall a. Enum a => a -> Int
fromEnum PrimElemRep
per))
  get :: ReadBinHandle -> IO PrimElemRep
get  ReadBinHandle
bh = Int -> PrimElemRep
forall a. Enum a => Int -> a
toEnum (Int -> PrimElemRep) -> (Word8 -> Int) -> Word8 -> PrimElemRep
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word8 -> PrimElemRep) -> IO Word8 -> IO PrimElemRep
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadBinHandle -> IO Word8
getByte ReadBinHandle
bh

isGcPtrRep :: PrimRep -> Bool
isGcPtrRep :: PrimRep -> Bool
isGcPtrRep (BoxedRep Maybe Levity
_) = Bool
True
isGcPtrRep PrimRep
_            = Bool
False

-- A PrimRep is compatible with another iff one can be coerced to the other.
-- See Note [Bad unsafe coercion] in GHC.Core.Lint for when are two types coercible.
primRepCompatible :: Platform -> PrimRep -> PrimRep -> Bool
primRepCompatible :: Platform -> PrimRep -> PrimRep -> Bool
primRepCompatible Platform
platform PrimRep
rep1 PrimRep
rep2 =
    (PrimRep -> Bool
isUnboxed PrimRep
rep1 Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== PrimRep -> Bool
isUnboxed PrimRep
rep2) Bool -> Bool -> Bool
&&
    (Platform -> PrimRep -> Int
primRepSizeB Platform
platform PrimRep
rep1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Platform -> PrimRep -> Int
primRepSizeB Platform
platform PrimRep
rep2) Bool -> Bool -> Bool
&&
    (PrimRep -> Maybe Bool
primRepIsFloat PrimRep
rep1 Maybe Bool -> Maybe Bool -> Bool
forall a. Eq a => a -> a -> Bool
== PrimRep -> Maybe Bool
primRepIsFloat PrimRep
rep2)
  where
    isUnboxed :: PrimRep -> Bool
isUnboxed = Bool -> Bool
not (Bool -> Bool) -> (PrimRep -> Bool) -> PrimRep -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PrimRep -> Bool
isGcPtrRep

-- More general version of `primRepCompatible` for types represented by zero or
-- more than one PrimReps.
primRepsCompatible :: Platform -> [PrimRep] -> [PrimRep] -> Bool
primRepsCompatible :: Platform -> [PrimRep] -> [PrimRep] -> Bool
primRepsCompatible Platform
platform [PrimRep]
reps1 [PrimRep]
reps2 =
    [PrimRep] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [PrimRep]
reps1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== [PrimRep] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [PrimRep]
reps2 Bool -> Bool -> Bool
&&
    [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and ((PrimRep -> PrimRep -> Bool) -> [PrimRep] -> [PrimRep] -> [Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (Platform -> PrimRep -> PrimRep -> Bool
primRepCompatible Platform
platform) [PrimRep]
reps1 [PrimRep]
reps2)

-- | The size of a 'PrimRep' in bytes.
--
-- This applies also when used in a constructor, where we allow packing the
-- fields. For instance, in @data Foo = Foo Float# Float#@ the two fields will
-- take only 8 bytes, which for 64-bit arch will be equal to 1 word.
-- See also mkVirtHeapOffsetsWithPadding for details of how data fields are
-- laid out.
primRepSizeB :: Platform -> PrimRep -> Int
primRepSizeB :: Platform -> PrimRep -> Int
primRepSizeB Platform
platform = \case
   PrimRep
IntRep           -> Platform -> Int
platformWordSizeInBytes Platform
platform
   PrimRep
WordRep          -> Platform -> Int
platformWordSizeInBytes Platform
platform
   PrimRep
Int8Rep          -> Int
1
   PrimRep
Int16Rep         -> Int
2
   PrimRep
Int32Rep         -> Int
4
   PrimRep
Int64Rep         -> Int
8
   PrimRep
Word8Rep         -> Int
1
   PrimRep
Word16Rep        -> Int
2
   PrimRep
Word32Rep        -> Int
4
   PrimRep
Word64Rep        -> Int
8
   PrimRep
FloatRep         -> Int
fLOAT_SIZE
   PrimRep
DoubleRep        -> Int
dOUBLE_SIZE
   PrimRep
AddrRep          -> Platform -> Int
platformWordSizeInBytes Platform
platform
   BoxedRep Maybe Levity
_       -> Platform -> Int
platformWordSizeInBytes Platform
platform
   (VecRep Int
len PrimElemRep
rep) -> Int
len Int -> Int -> Int
forall a. Num a => a -> a -> a
* Platform -> PrimElemRep -> Int
primElemRepSizeB Platform
platform PrimElemRep
rep

-- | Like primRepSizeB but assumes pointers/words are 8 words wide.
--
-- This can be useful to compute the size of a rep as if we were compiling
-- for a 64bit platform.
primRepSizeW64_B :: PrimRep -> Int
primRepSizeW64_B :: PrimRep -> Int
primRepSizeW64_B = \case
   PrimRep
IntRep           -> Int
8
   PrimRep
WordRep          -> Int
8
   PrimRep
Int8Rep          -> Int
1
   PrimRep
Int16Rep         -> Int
2
   PrimRep
Int32Rep         -> Int
4
   PrimRep
Int64Rep         -> Int
8
   PrimRep
Word8Rep         -> Int
1
   PrimRep
Word16Rep        -> Int
2
   PrimRep
Word32Rep        -> Int
4
   PrimRep
Word64Rep        -> Int
8
   PrimRep
FloatRep         -> Int
fLOAT_SIZE
   PrimRep
DoubleRep        -> Int
dOUBLE_SIZE
   PrimRep
AddrRep          -> Int
8
   BoxedRep{}       -> Int
8
   (VecRep Int
len PrimElemRep
rep) -> Int
len Int -> Int -> Int
forall a. Num a => a -> a -> a
* PrimElemRep -> Int
primElemRepSizeW64_B PrimElemRep
rep

primElemRepSizeB :: Platform -> PrimElemRep -> Int
primElemRepSizeB :: Platform -> PrimElemRep -> Int
primElemRepSizeB Platform
platform = Platform -> PrimRep -> Int
primRepSizeB Platform
platform (PrimRep -> Int) -> (PrimElemRep -> PrimRep) -> PrimElemRep -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PrimElemRep -> PrimRep
primElemRepToPrimRep

-- | Like primElemRepSizeB but assumes pointers/words are 8 words wide.
--
-- This can be useful to compute the size of a rep as if we were compiling
-- for a 64bit platform.
primElemRepSizeW64_B :: PrimElemRep -> Int
primElemRepSizeW64_B :: PrimElemRep -> Int
primElemRepSizeW64_B = PrimRep -> Int
primRepSizeW64_B (PrimRep -> Int) -> (PrimElemRep -> PrimRep) -> PrimElemRep -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PrimElemRep -> PrimRep
primElemRepToPrimRep

primElemRepToPrimRep :: PrimElemRep -> PrimRep
primElemRepToPrimRep :: PrimElemRep -> PrimRep
primElemRepToPrimRep PrimElemRep
Int8ElemRep   = PrimRep
Int8Rep
primElemRepToPrimRep PrimElemRep
Int16ElemRep  = PrimRep
Int16Rep
primElemRepToPrimRep PrimElemRep
Int32ElemRep  = PrimRep
Int32Rep
primElemRepToPrimRep PrimElemRep
Int64ElemRep  = PrimRep
Int64Rep
primElemRepToPrimRep PrimElemRep
Word8ElemRep  = PrimRep
Word8Rep
primElemRepToPrimRep PrimElemRep
Word16ElemRep = PrimRep
Word16Rep
primElemRepToPrimRep PrimElemRep
Word32ElemRep = PrimRep
Word32Rep
primElemRepToPrimRep PrimElemRep
Word64ElemRep = PrimRep
Word64Rep
primElemRepToPrimRep PrimElemRep
FloatElemRep  = PrimRep
FloatRep
primElemRepToPrimRep PrimElemRep
DoubleElemRep = PrimRep
DoubleRep

-- | Return if Rep stands for floating type,
-- returns Nothing for vector types.
primRepIsFloat :: PrimRep -> Maybe Bool
primRepIsFloat :: PrimRep -> Maybe Bool
primRepIsFloat  PrimRep
FloatRep     = Bool -> Maybe Bool
forall a. a -> Maybe a
Just Bool
True
primRepIsFloat  PrimRep
DoubleRep    = Bool -> Maybe Bool
forall a. a -> Maybe a
Just Bool
True
primRepIsFloat  (VecRep Int
_ PrimElemRep
_) = Maybe Bool
forall a. Maybe a
Nothing
primRepIsFloat  PrimRep
_            = Bool -> Maybe Bool
forall a. a -> Maybe a
Just Bool
False

-- Rep is one of the word reps.
primRepIsWord :: PrimRep -> Bool
primRepIsWord :: PrimRep -> Bool
primRepIsWord PrimRep
WordRep = Bool
True
primRepIsWord (PrimRep
Word8Rep) = Bool
True
primRepIsWord (PrimRep
Word16Rep) = Bool
True
primRepIsWord (PrimRep
Word32Rep) = Bool
True
primRepIsWord (PrimRep
Word64Rep) = Bool
True
primRepIsWord PrimRep
_ = Bool
False

-- Rep is one of the int reps.
primRepIsInt :: PrimRep -> Bool
primRepIsInt :: PrimRep -> Bool
primRepIsInt (PrimRep
IntRep) = Bool
True
primRepIsInt (PrimRep
Int8Rep) = Bool
True
primRepIsInt (PrimRep
Int16Rep) = Bool
True
primRepIsInt (PrimRep
Int32Rep) = Bool
True
primRepIsInt (PrimRep
Int64Rep) = Bool
True
primRepIsInt PrimRep
_ = Bool
False

{-
************************************************************************
*                                                                      *
                             Field labels
*                                                                      *
************************************************************************
-}

-- | The labels for the fields of this particular 'TyCon'
tyConFieldLabels :: TyCon -> [FieldLabel]
tyConFieldLabels :: TyCon -> [FieldLabel]
tyConFieldLabels TyCon
tc = FieldLabelEnv -> [FieldLabel]
forall a. DFastStringEnv a -> [a]
dFsEnvElts (FieldLabelEnv -> [FieldLabel]) -> FieldLabelEnv -> [FieldLabel]
forall a b. (a -> b) -> a -> b
$ TyCon -> FieldLabelEnv
tyConFieldLabelEnv TyCon
tc

-- | The labels for the fields of this particular 'TyCon'
tyConFieldLabelEnv :: TyCon -> FieldLabelEnv
tyConFieldLabelEnv :: TyCon -> FieldLabelEnv
tyConFieldLabelEnv (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcFields :: TyConDetails -> FieldLabelEnv
algTcFields = FieldLabelEnv
fields } <- TyConDetails
details = FieldLabelEnv
fields
  | Bool
otherwise                                    = FieldLabelEnv
forall a. DFastStringEnv a
emptyDFsEnv

-- | Look up a field label belonging to this 'TyCon'
lookupTyConFieldLabel :: FieldLabelString -> TyCon -> Maybe FieldLabel
lookupTyConFieldLabel :: FieldLabelString -> TyCon -> Maybe FieldLabel
lookupTyConFieldLabel FieldLabelString
lbl TyCon
tc = FieldLabelEnv -> FastString -> Maybe FieldLabel
forall a. DFastStringEnv a -> FastString -> Maybe a
lookupDFsEnv (TyCon -> FieldLabelEnv
tyConFieldLabelEnv TyCon
tc) (FieldLabelString -> FastString
field_label FieldLabelString
lbl)

-- | Make a map from strings to FieldLabels from all the data
-- constructors of this algebraic tycon
fieldsOfAlgTcRhs :: AlgTyConRhs -> FieldLabelEnv
fieldsOfAlgTcRhs :: AlgTyConRhs -> FieldLabelEnv
fieldsOfAlgTcRhs AlgTyConRhs
rhs = [(FastString, FieldLabel)] -> FieldLabelEnv
forall a. [(FastString, a)] -> DFastStringEnv a
mkDFsEnv [ (FieldLabelString -> FastString
field_label (FieldLabelString -> FastString) -> FieldLabelString -> FastString
forall a b. (a -> b) -> a -> b
$ FieldLabel -> FieldLabelString
flLabel FieldLabel
fl, FieldLabel
fl)
                                | FieldLabel
fl <- [DataCon] -> [FieldLabel]
forall {t :: * -> *}. Foldable t => t DataCon -> [FieldLabel]
dataConsFields (AlgTyConRhs -> [DataCon]
visibleDataCons AlgTyConRhs
rhs) ]
  where
    -- Duplicates in this list will be removed by 'mkFsEnv'
    dataConsFields :: t DataCon -> [FieldLabel]
dataConsFields t DataCon
dcs = (DataCon -> [FieldLabel]) -> t DataCon -> [FieldLabel]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap DataCon -> [FieldLabel]
dataConFieldLabels t DataCon
dcs


{-
************************************************************************
*                                                                      *
\subsection{TyCon Construction}
*                                                                      *
************************************************************************

Note: the TyCon constructors all take a Kind as one argument, even though
they could, in principle, work out their Kind from their other arguments.
But to do so they need functions from Types, and that makes a nasty
module mutual-recursion.  And they aren't called from many places.
So we compromise, and move their Kind calculation to the call site.
-}

mkTyCon :: Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon :: Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind [Role]
roles TyConDetails
details
  = TyCon
tc
  where
    -- Recurisve binding because of tcNullaryTy
    tc :: TyCon
tc = TyCon { tyConName :: Name
tyConName             = Name
name
               , tyConUnique :: Unique
tyConUnique           = Name -> Unique
nameUnique Name
name
               , tyConBinders :: [TyConBinder]
tyConBinders          = [TyConBinder]
binders
               , tyConResKind :: Kind
tyConResKind          = Kind
res_kind
               , tyConRoles :: [Role]
tyConRoles            = [Role]
roles
               , tyConDetails :: TyConDetails
tyConDetails          = TyConDetails
details

                 -- Cached things
               , tyConKind :: Kind
tyConKind             = [TyConBinder] -> Kind -> Kind
mkTyConKind [TyConBinder]
binders Kind
res_kind
               , tyConArity :: Int
tyConArity            = [TyConBinder] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [TyConBinder]
binders
               , tyConNullaryTy :: Kind
tyConNullaryTy        = TyCon -> Kind
mkNakedTyConTy TyCon
tc
               , tyConHasClosedResKind :: Bool
tyConHasClosedResKind = Kind -> Bool
noFreeVarsOfType Kind
res_kind
               , tyConTyVars :: [TyVar]
tyConTyVars           = [TyConBinder] -> [TyVar]
forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [TyConBinder]
binders }

-- | This is the making of an algebraic 'TyCon'.
mkAlgTyCon :: Name
           -> [TyConBinder]  -- ^ Binders of the 'TyCon'
           -> Kind              -- ^ Result kind
           -> [Role]            -- ^ The roles for each TyVar
           -> Maybe CType       -- ^ The C type this type corresponds to
                                --   when using the CAPI FFI
           -> [PredType]        -- ^ Stupid theta: see 'algTcStupidTheta'
           -> AlgTyConRhs       -- ^ Information about data constructors
           -> AlgTyConFlav      -- ^ What flavour is it?
                                -- (e.g. vanilla, type family)
           -> Bool              -- ^ Was the 'TyCon' declared with GADT syntax?
           -> TyCon
mkAlgTyCon :: Name
-> [TyConBinder]
-> Kind
-> [Role]
-> Maybe CType
-> [Kind]
-> AlgTyConRhs
-> AlgTyConFlav
-> Bool
-> TyCon
mkAlgTyCon Name
name [TyConBinder]
binders Kind
res_kind [Role]
roles Maybe CType
cType [Kind]
stupid AlgTyConRhs
rhs AlgTyConFlav
parent Bool
gadt_syn
  = Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind [Role]
roles (TyConDetails -> TyCon) -> TyConDetails -> TyCon
forall a b. (a -> b) -> a -> b
$
    AlgTyCon { tyConCType :: Maybe CType
tyConCType       = Maybe CType
cType
             , algTcStupidTheta :: [Kind]
algTcStupidTheta = [Kind]
stupid
             , algTcRhs :: AlgTyConRhs
algTcRhs         = AlgTyConRhs
rhs
             , algTcFields :: FieldLabelEnv
algTcFields      = AlgTyConRhs -> FieldLabelEnv
fieldsOfAlgTcRhs AlgTyConRhs
rhs
             , algTcFlavour :: AlgTyConFlav
algTcFlavour     = Bool -> SDoc -> AlgTyConFlav -> AlgTyConFlav
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Name -> AlgTyConFlav -> Bool
okParent Name
name AlgTyConFlav
parent)
                                            (Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr Name
name SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ AlgTyConFlav -> SDoc
forall a. Outputable a => a -> SDoc
ppr AlgTyConFlav
parent) AlgTyConFlav
parent
             , algTcGadtSyntax :: Bool
algTcGadtSyntax  = Bool
gadt_syn }

-- | Simpler specialization of 'mkAlgTyCon' for classes
mkClassTyCon :: Name -> [TyConBinder]
             -> [Role] -> AlgTyConRhs -> Class
             -> Name -> TyCon
mkClassTyCon :: Name
-> [TyConBinder] -> [Role] -> AlgTyConRhs -> Class -> Name -> TyCon
mkClassTyCon Name
name [TyConBinder]
binders [Role]
roles AlgTyConRhs
rhs Class
clas Name
tc_rep_name
  = Name
-> [TyConBinder]
-> Kind
-> [Role]
-> Maybe CType
-> [Kind]
-> AlgTyConRhs
-> AlgTyConFlav
-> Bool
-> TyCon
mkAlgTyCon Name
name [TyConBinder]
binders Kind
constraintKind [Role]
roles Maybe CType
forall a. Maybe a
Nothing [] AlgTyConRhs
rhs
               (Class -> Name -> AlgTyConFlav
ClassTyCon Class
clas Name
tc_rep_name)
               Bool
False

mkTupleTyCon :: Name
             -> [TyConBinder]
             -> Kind    -- ^ Result kind of the 'TyCon'
             -> DataCon
             -> TupleSort    -- ^ Whether the tuple is boxed or unboxed
             -> AlgTyConFlav
             -> TyCon
mkTupleTyCon :: Name
-> [TyConBinder]
-> Kind
-> DataCon
-> TupleSort
-> AlgTyConFlav
-> TyCon
mkTupleTyCon Name
name [TyConBinder]
binders Kind
res_kind DataCon
con TupleSort
sort AlgTyConFlav
parent
  = Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind ([TyConBinder] -> Role -> [Role]
constRoles [TyConBinder]
binders Role
Representational) (TyConDetails -> TyCon) -> TyConDetails -> TyCon
forall a b. (a -> b) -> a -> b
$
    AlgTyCon { tyConCType :: Maybe CType
tyConCType       = Maybe CType
forall a. Maybe a
Nothing
             , algTcGadtSyntax :: Bool
algTcGadtSyntax  = Bool
False
             , algTcStupidTheta :: [Kind]
algTcStupidTheta = []
             , algTcRhs :: AlgTyConRhs
algTcRhs         = TupleTyCon { data_con :: DataCon
data_con = DataCon
con
                                             , tup_sort :: TupleSort
tup_sort = TupleSort
sort }
             , algTcFields :: FieldLabelEnv
algTcFields      = FieldLabelEnv
forall a. DFastStringEnv a
emptyDFsEnv
             , algTcFlavour :: AlgTyConFlav
algTcFlavour     = AlgTyConFlav
parent }

constRoles :: [TyConBinder] -> Role -> [Role]
constRoles :: [TyConBinder] -> Role -> [Role]
constRoles [TyConBinder]
bndrs Role
role = [Role
role | TyConBinder
_ <- [TyConBinder]
bndrs]

mkSumTyCon :: Name
           -> [TyConBinder]
           -> Kind    -- ^ Kind of the resulting 'TyCon'
           -> [DataCon]
           -> AlgTyConFlav
           -> TyCon
mkSumTyCon :: Name -> [TyConBinder] -> Kind -> [DataCon] -> AlgTyConFlav -> TyCon
mkSumTyCon Name
name [TyConBinder]
binders Kind
res_kind [DataCon]
cons AlgTyConFlav
parent
  = Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind ([TyConBinder] -> Role -> [Role]
constRoles [TyConBinder]
binders Role
Representational) (TyConDetails -> TyCon) -> TyConDetails -> TyCon
forall a b. (a -> b) -> a -> b
$
    AlgTyCon { tyConCType :: Maybe CType
tyConCType       = Maybe CType
forall a. Maybe a
Nothing
             , algTcGadtSyntax :: Bool
algTcGadtSyntax  = Bool
False
             , algTcStupidTheta :: [Kind]
algTcStupidTheta = []
             , algTcRhs :: AlgTyConRhs
algTcRhs         = [DataCon] -> AlgTyConRhs
mkSumTyConRhs [DataCon]
cons
             , algTcFields :: FieldLabelEnv
algTcFields      = FieldLabelEnv
forall a. DFastStringEnv a
emptyDFsEnv
             , algTcFlavour :: AlgTyConFlav
algTcFlavour     = AlgTyConFlav
parent }

-- | Makes a tycon suitable for use during type-checking. It stores
-- a variety of details about the definition of the TyCon, but no
-- right-hand side. It lives only during the type-checking of a
-- mutually-recursive group of tycons; it is then zonked to a proper
-- TyCon in zonkTcTyCon.
-- See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon] in "GHC.Tc.TyCl"
mkTcTyCon :: Name
          -> [TyConBinder]
          -> Kind                -- ^ /result/ kind only
          -> [(Name,TcTyVar)]    -- ^ Scoped type variables;
          -> Bool                -- ^ Is this TcTyCon generalised already?
          -> TyConFlavour TyCon  -- ^ What sort of 'TyCon' this represents
          -> TyCon
mkTcTyCon :: Name
-> [TyConBinder]
-> Kind
-> [(Name, TyVar)]
-> Bool
-> TyConFlavour TyCon
-> TyCon
mkTcTyCon Name
name [TyConBinder]
binders Kind
res_kind [(Name, TyVar)]
scoped_tvs Bool
poly TyConFlavour TyCon
flav
  = Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind ([TyConBinder] -> Role -> [Role]
constRoles [TyConBinder]
binders Role
Nominal) (TyConDetails -> TyCon) -> TyConDetails -> TyCon
forall a b. (a -> b) -> a -> b
$
    TcTyCon { tctc_scoped_tvs :: [(Name, TyVar)]
tctc_scoped_tvs = [(Name, TyVar)]
scoped_tvs
            , tctc_is_poly :: Bool
tctc_is_poly    = Bool
poly
            , tctc_flavour :: TyConFlavour TyCon
tctc_flavour    = TyConFlavour TyCon
flav }

-- | No scoped type variables (to be used with mkTcTyCon).
noTcTyConScopedTyVars :: [(Name, TcTyVar)]
noTcTyConScopedTyVars :: [(Name, TyVar)]
noTcTyConScopedTyVars = []

-- | Create an primitive 'TyCon', such as @Int#@, @Type@ or @RealWorld@
-- Primitive TyCons are marshalable iff not lifted.
-- If you'd like to change this, modify marshalablePrimTyCon.
mkPrimTyCon :: Name -> [TyConBinder]
            -> Kind    -- ^ /result/ kind
                       -- Must answer 'True' to 'isFixedRuntimeRepKind' (i.e., no representation polymorphism).
                       -- (If you need a representation-polymorphic PrimTyCon,
                       -- change tcHasFixedRuntimeRep, marshalablePrimTyCon, reifyTyCon for PrimTyCons.)
            -> [Role]
            -> TyCon
mkPrimTyCon :: Name -> [TyConBinder] -> Kind -> [Role] -> TyCon
mkPrimTyCon Name
name [TyConBinder]
binders Kind
res_kind [Role]
roles
  = Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind [Role]
roles (TyConDetails -> TyCon) -> TyConDetails -> TyCon
forall a b. (a -> b) -> a -> b
$
    PrimTyCon { primRepName :: Name
primRepName  = Name -> Name
mkPrelTyConRepName Name
name }

-- | Create a type synonym 'TyCon'
mkSynonymTyCon :: Name -> [TyConBinder] -> Kind   -- ^ /result/ kind
               -> [Role] -> Type
               -> Bool -> Bool -> Bool -> Bool
               -> TyCon
mkSynonymTyCon :: Name
-> [TyConBinder]
-> Kind
-> [Role]
-> Kind
-> Bool
-> Bool
-> Bool
-> Bool
-> TyCon
mkSynonymTyCon Name
name [TyConBinder]
binders Kind
res_kind [Role]
roles Kind
rhs Bool
is_tau
               Bool
is_fam_free Bool
is_forgetful Bool
is_concrete
  = Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind [Role]
roles (TyConDetails -> TyCon) -> TyConDetails -> TyCon
forall a b. (a -> b) -> a -> b
$
    SynonymTyCon { synTcRhs :: Kind
synTcRhs       = Kind
rhs
                 , synIsTau :: Bool
synIsTau       = Bool
is_tau
                 , synIsFamFree :: Bool
synIsFamFree   = Bool
is_fam_free
                 , synIsForgetful :: Bool
synIsForgetful = Bool
is_forgetful
                 , synIsConcrete :: Bool
synIsConcrete  = Bool
is_concrete }

-- | Create a type family 'TyCon'
mkFamilyTyCon :: Name -> [TyConBinder] -> Kind  -- ^ /result/ kind
              -> Maybe Name -> FamTyConFlav
              -> Maybe Class -> Injectivity -> TyCon
mkFamilyTyCon :: Name
-> [TyConBinder]
-> Kind
-> Maybe Name
-> FamTyConFlav
-> Maybe Class
-> Injectivity
-> TyCon
mkFamilyTyCon Name
name [TyConBinder]
binders Kind
res_kind Maybe Name
resVar FamTyConFlav
flav Maybe Class
parent Injectivity
inj
  = Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind ([TyConBinder] -> Role -> [Role]
constRoles [TyConBinder]
binders Role
Nominal) (TyConDetails -> TyCon) -> TyConDetails -> TyCon
forall a b. (a -> b) -> a -> b
$
    FamilyTyCon { famTcResVar :: Maybe Name
famTcResVar  = Maybe Name
resVar
                , famTcFlav :: FamTyConFlav
famTcFlav    = FamTyConFlav
flav
                , famTcParent :: Maybe TyCon
famTcParent  = Class -> TyCon
classTyCon (Class -> TyCon) -> Maybe Class -> Maybe TyCon
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe Class
parent
                , famTcInj :: Injectivity
famTcInj     = Injectivity
inj }

-- | Create a promoted data constructor 'TyCon'
-- Somewhat dodgily, we give it the same Name
-- as the data constructor itself; when we pretty-print
-- the TyCon we add a quote; see the Outputable TyCon instance
mkPromotedDataCon :: DataCon -> Name -> TyConRepName
                  -> [TyConBinder] -> Kind -> [Role]
                  -> PromDataConInfo -> TyCon
mkPromotedDataCon :: DataCon
-> Name
-> Name
-> [TyConBinder]
-> Kind
-> [Role]
-> PromDataConInfo
-> TyCon
mkPromotedDataCon DataCon
con Name
name Name
rep_name [TyConBinder]
binders Kind
res_kind [Role]
roles PromDataConInfo
rep_info
  = Name -> [TyConBinder] -> Kind -> [Role] -> TyConDetails -> TyCon
mkTyCon Name
name [TyConBinder]
binders Kind
res_kind [Role]
roles (TyConDetails -> TyCon) -> TyConDetails -> TyCon
forall a b. (a -> b) -> a -> b
$
    PromotedDataCon { dataCon :: DataCon
dataCon    = DataCon
con
                    , tcRepName :: Name
tcRepName  = Name
rep_name
                    , promDcInfo :: PromDataConInfo
promDcInfo = PromDataConInfo
rep_info }

-- | Test if the 'TyCon' is algebraic but abstract (invisible data constructors)
isAbstractTyCon :: TyCon -> Bool
isAbstractTyCon :: TyCon -> Bool
isAbstractTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AbstractTyCon {} } <- TyConDetails
details = Bool
True
  | Bool
otherwise           = Bool
False

-- | Does this 'TyCon' represent something that cannot be defined in Haskell?
isPrimTyCon :: TyCon -> Bool
isPrimTyCon :: TyCon -> Bool
isPrimTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | PrimTyCon {} <- TyConDetails
details = Bool
True
  | Bool
otherwise               = Bool
False

-- | Returns @True@ if the supplied 'TyCon' resulted from either a
-- @data@ or @newtype@ declaration
isAlgTyCon :: TyCon -> Bool
isAlgTyCon :: TyCon -> Bool
isAlgTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {} <- TyConDetails
details = Bool
True
  | Bool
otherwise              = Bool
False

-- | Returns @True@ for vanilla AlgTyCons -- that is, those created
-- with a @data@ or @newtype@ declaration.
isVanillaAlgTyCon :: TyCon -> Bool
isVanillaAlgTyCon :: TyCon -> Bool
isVanillaAlgTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = VanillaAlgTyCon Name
_ } <- TyConDetails
details = Bool
True
  | Bool
otherwise                                                = Bool
False

-- | Returns @True@ if a boxed type headed by the given @TyCon@
-- satisfies condition DTT2 of Note [DataToTag overview] in
-- GHC.Tc.Instance.Class
isValidDTT2TyCon :: TyCon -> Bool
isValidDTT2TyCon :: TyCon -> Bool
isValidDTT2TyCon = TyCon -> Bool
isDataTyCon

isDataTyCon :: TyCon -> Bool
-- ^ Returns @True@ for data types that are /definitely/ represented by
-- heap-allocated constructors.  These are scrutinised by Core-level
-- @case@ expressions, and they get info tables allocated for them.
--
-- Generally, the function will be true for all @data@ types and false
-- for @newtype@s, unboxed tuples, unboxed sums and type family
-- 'TyCon's. But it is not guaranteed to return @True@ in all cases
-- that it could.
--
-- NB: for a data type family, only the /instance/ 'TyCon's
--     get an info table.  The family declaration 'TyCon' does not
isDataTyCon :: TyCon -> Bool
isDataTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs} <- TyConDetails
details
  = case AlgTyConRhs
rhs of
        TupleTyCon { tup_sort :: AlgTyConRhs -> TupleSort
tup_sort = TupleSort
sort }
                           -> Boxity -> Bool
isBoxed (TupleSort -> Boxity
tupleSortBoxity TupleSort
sort)
        SumTyCon {}        -> Bool
False
            -- Constructors from "type data" declarations exist only at
            -- the type level.
            -- See Note [Type data declarations] in GHC.Rename.Module.
        DataTyCon { is_type_data :: AlgTyConRhs -> Bool
is_type_data = Bool
type_data } -> Bool -> Bool
not Bool
type_data
        NewTyCon {}        -> Bool
False
        AbstractTyCon {}   -> Bool
False      -- We don't know, so return False
isDataTyCon TyCon
_ = Bool
False

-- | Was this 'TyCon' declared as "type data"?
-- See Note [Type data declarations] in GHC.Rename.Module.
isTypeDataTyCon :: TyCon -> Bool
isTypeDataTyCon :: TyCon -> Bool
isTypeDataTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = DataTyCon {is_type_data :: AlgTyConRhs -> Bool
is_type_data = Bool
type_data }} <- TyConDetails
details
              = Bool
type_data
  | Bool
otherwise = Bool
False

-- | 'isInjectiveTyCon' is true of 'TyCon's for which this property holds
-- (where r is the role passed in):
--   If (T a1 b1 c1) ~r (T a2 b2 c2), then (a1 ~r1 a2), (b1 ~r2 b2), and (c1 ~r3 c2)
-- (where r1, r2, and r3, are the roles given by tyConRolesX tc r)
-- See also Note [Decomposing TyConApp equalities] in "GHC.Tc.Solver.Equality"
isInjectiveTyCon :: TyCon -> Role -> Bool
isInjectiveTyCon :: TyCon -> Role -> Bool
isInjectiveTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details }) Role
role
  = TyConDetails -> Role -> Bool
go TyConDetails
details Role
role
  where
    go :: TyConDetails -> Role -> Bool
go TyConDetails
_                             Role
Phantom          = Bool
True -- Vacuously; (t1 ~P t2) holds for all t1, t2!
    go (AlgTyCon {})                 Role
Nominal          = Bool
True
    go (AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs})   Role
Representational = AlgTyConRhs -> Bool
isGenInjAlgRhs AlgTyConRhs
rhs
    go (SynonymTyCon {})             Role
_                = Bool
False
    go (FamilyTyCon { famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = DataFamilyTyCon Name
_ })
                                                  Role
Nominal = Bool
True
    go (FamilyTyCon { famTcInj :: TyConDetails -> Injectivity
famTcInj = Injective [Bool]
inj }) Role
Nominal = [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and [Bool]
inj
    go (FamilyTyCon {})              Role
_                = Bool
False
    go (PrimTyCon {})                Role
_                = Bool
True
    go (PromotedDataCon {})          Role
_                = Bool
True
    go (TcTyCon {})                  Role
_                = Bool
True

  -- Reply True for TcTyCon to minimise knock on type errors
  -- See (W1) in Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon] in GHC.Tc.TyCl


-- | 'isGenerativeTyCon' is true of 'TyCon's for which this property holds
-- (where r is the role passed in):
--   If (T tys ~r t), then (t's head ~r T).
-- See also Note [Decomposing TyConApp equalities] in "GHC.Tc.Solver.Equality"
--
-- NB: at Nominal role, isGenerativeTyCon is simple:
--     isGenerativeTyCon tc Nominal
--       = not (isTypeFamilyTyCon tc || isSynonymTyCon tc)
isGenerativeTyCon :: TyCon -> Role -> Bool
isGenerativeTyCon :: TyCon -> Role -> Bool
isGenerativeTyCon tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details }) Role
role
   = Role -> TyConDetails -> Bool
go Role
role TyConDetails
details
   where
    go :: Role -> TyConDetails -> Bool
go Role
Nominal (FamilyTyCon { famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = DataFamilyTyCon Name
_ }) = Bool
True
    go Role
_       (FamilyTyCon {})                                = Bool
False

    -- In all other cases, injectivity implies generativity
    go Role
r TyConDetails
_ = TyCon -> Role -> Bool
isInjectiveTyCon TyCon
tc Role
r

-- | Is this an 'AlgTyConRhs' of a 'TyCon' that is generative and injective
-- with respect to representational equality?
isGenInjAlgRhs :: AlgTyConRhs -> Bool
isGenInjAlgRhs :: AlgTyConRhs -> Bool
isGenInjAlgRhs (TupleTyCon {})          = Bool
True
isGenInjAlgRhs (SumTyCon {})            = Bool
True
isGenInjAlgRhs (DataTyCon {})           = Bool
True
isGenInjAlgRhs (AbstractTyCon {})       = Bool
False
isGenInjAlgRhs (NewTyCon {})            = Bool
False

-- | Is this 'TyCon' that for a @newtype@
isNewTyCon :: TyCon -> Bool
isNewTyCon :: TyCon -> Bool
isNewTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = NewTyCon {}} <- TyConDetails
details = Bool
True
  | Bool
otherwise                                    = Bool
False

-- | Take a 'TyCon' apart into the 'TyVar's it scopes over, the 'Type' it
-- expands into, and (possibly) a coercion from the representation type to the
-- @newtype@.
-- Returns @Nothing@ if this is not possible.
unwrapNewTyCon_maybe :: TyCon -> Maybe ([TyVar], Type, CoAxiom Unbranched)
unwrapNewTyCon_maybe :: TyCon -> Maybe ([TyVar], Kind, CoAxiom Unbranched)
unwrapNewTyCon_maybe (TyCon { tyConTyVars :: TyCon -> [TyVar]
tyConTyVars = [TyVar]
tvs, tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = NewTyCon { nt_co :: AlgTyConRhs -> CoAxiom Unbranched
nt_co = CoAxiom Unbranched
co, nt_rhs :: AlgTyConRhs -> Kind
nt_rhs = Kind
rhs }} <- TyConDetails
details
              = ([TyVar], Kind, CoAxiom Unbranched)
-> Maybe ([TyVar], Kind, CoAxiom Unbranched)
forall a. a -> Maybe a
Just ([TyVar]
tvs, Kind
rhs, CoAxiom Unbranched
co)
  | Bool
otherwise = Maybe ([TyVar], Kind, CoAxiom Unbranched)
forall a. Maybe a
Nothing

unwrapNewTyConEtad_maybe :: TyCon -> Maybe ([TyVar], Type, CoAxiom Unbranched)
unwrapNewTyConEtad_maybe :: TyCon -> Maybe ([TyVar], Kind, CoAxiom Unbranched)
unwrapNewTyConEtad_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = NewTyCon { nt_co :: AlgTyConRhs -> CoAxiom Unbranched
nt_co = CoAxiom Unbranched
co
                                    , nt_etad_rhs :: AlgTyConRhs -> ([TyVar], Kind)
nt_etad_rhs = ([TyVar]
tvs,Kind
rhs) }} <- TyConDetails
details
              = ([TyVar], Kind, CoAxiom Unbranched)
-> Maybe ([TyVar], Kind, CoAxiom Unbranched)
forall a. a -> Maybe a
Just ([TyVar]
tvs, Kind
rhs, CoAxiom Unbranched
co)
  | Bool
otherwise = Maybe ([TyVar], Kind, CoAxiom Unbranched)
forall a. Maybe a
Nothing

-- | Is this a 'TyCon' representing a regular H98 type synonym (@type@)?
{-# INLINE isTypeSynonymTyCon #-}  -- See Note [Inlining coreView] in GHC.Core.Type
isTypeSynonymTyCon :: TyCon -> Bool
isTypeSynonymTyCon :: TyCon -> Bool
isTypeSynonymTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | SynonymTyCon {} <- TyConDetails
details = Bool
True
  | Bool
otherwise                  = Bool
False

isTauTyCon :: TyCon -> Bool
isTauTyCon :: TyCon -> Bool
isTauTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | SynonymTyCon { synIsTau :: TyConDetails -> Bool
synIsTau = Bool
is_tau } <- TyConDetails
details = Bool
is_tau
  | Bool
otherwise                                     = Bool
True

-- | Is this tycon neither a type family nor a synonym that expands
-- to a type family?
isFamFreeTyCon :: TyCon -> Bool
isFamFreeTyCon :: TyCon -> Bool
isFamFreeTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | SynonymTyCon { synIsFamFree :: TyConDetails -> Bool
synIsFamFree = Bool
fam_free } <- TyConDetails
details = Bool
fam_free
  | FamilyTyCon { famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = FamTyConFlav
flav }         <- TyConDetails
details = FamTyConFlav -> Bool
isDataFamFlav FamTyConFlav
flav
  | Bool
otherwise                                           = Bool
True

-- | Is this a forgetful type synonym? If this is a type synonym whose
-- RHS does not mention one (or more) of its bound variables, returns
-- True. Thus, False means that all bound variables appear on the RHS;
-- True may not mean anything, as the test to set this flag is
-- conservative.
--
-- See Note [Forgetful type synonyms]
isForgetfulSynTyCon :: TyCon -> Bool
isForgetfulSynTyCon :: TyCon -> Bool
isForgetfulSynTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | SynonymTyCon { synIsForgetful :: TyConDetails -> Bool
synIsForgetful = Bool
forget } <- TyConDetails
details = Bool
forget
  | Bool
otherwise                                           = Bool
False

{- Note [Forgetful type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A type synonyms is /forgetful/ if its RHS fails to mention one (or more) of its bound variables.

Forgetfulness is conservative:
  * A non-forgetful synonym /guarantees/ to mention all its bound variables in its RHS.
  * It is always safe to classify a synonym as forgetful.

Examples:
    type R = Int             -- Not forgetful
    type S a = Int           -- Forgetful
    type T1 a = Int -> S a   -- Forgetful
    type T2 a = a -> S a     -- Not forgetful
    type T3 a = Int -> F a   -- Not forgetful
      where type family F a

* R shows that nullary synonyms are not forgetful.

* T2 shows that forgetfulness needs to account for uses of forgetful
  synonyms. `a` appears on the RHS, but only under a forgetful S

* T3 shows that non-forgetfulness is not the same as injectivity. T3 mentions its
  bound variable on its RHS, but under a type family.  So it is entirely possible
  that    T3 Int ~ T3 Bool

* Since type synonyms are non-recursive, we don't need a fixpoint analysis to
  determine forgetfulness.  It's rather easy -- see `GHC.Core.Type.buildSynTyCon`,
  which is a bit over-conservative for over-saturated synonyms.
-}

-- As for newtypes, it is in some contexts important to distinguish between
-- closed synonyms and synonym families, as synonym families have no unique
-- right hand side to which a synonym family application can expand.
--

-- | True iff we can decompose (T a b c) into ((T a b) c)
--   I.e. is it injective and generative w.r.t nominal equality?
--   That is, if (T a b) ~N d e f, is it always the case that
--            (T ~N d), (a ~N e) and (b ~N f)?
-- Specifically NOT true of synonyms (open and otherwise)
--
-- It'd be unusual to call tyConMustBeSaturated on a regular H98
-- type synonym, because you should probably have expanded it first
-- But regardless, it's not decomposable
tyConMustBeSaturated :: TyCon -> Bool
tyConMustBeSaturated :: TyCon -> Bool
tyConMustBeSaturated = TyConFlavour TyCon -> Bool
forall tc. TyConFlavour tc -> Bool
tcFlavourMustBeSaturated (TyConFlavour TyCon -> Bool)
-> (TyCon -> TyConFlavour TyCon) -> TyCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyCon -> TyConFlavour TyCon
tyConFlavour

-- | Is this an algebraic 'TyCon' declared with the GADT syntax?
isGadtSyntaxTyCon :: TyCon -> Bool
isGadtSyntaxTyCon :: TyCon -> Bool
isGadtSyntaxTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcGadtSyntax :: TyConDetails -> Bool
algTcGadtSyntax = Bool
res } <- TyConDetails
details = Bool
res
  | Bool
otherwise                                     = Bool
False

-- | Is this an algebraic 'TyCon' which is just an enumeration of values?
isEnumerationTyCon :: TyCon -> Bool
-- See Note [Enumeration types] in GHC.Core.TyCon
isEnumerationTyCon :: TyCon -> Bool
isEnumerationTyCon (TyCon { tyConArity :: TyCon -> Int
tyConArity = Int
arity, tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  = case AlgTyConRhs
rhs of
       DataTyCon { is_enum :: AlgTyConRhs -> Bool
is_enum = Bool
res } -> Bool
res
       TupleTyCon {}               -> Int
arity Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
       AlgTyConRhs
_                           -> Bool
False
  | Bool
otherwise = Bool
False

-- | Is this a 'TyCon', synonym or otherwise, that defines a family?
isFamilyTyCon :: TyCon -> Bool
isFamilyTyCon :: TyCon -> Bool
isFamilyTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon {} <- TyConDetails
details = Bool
True
  | Bool
otherwise                 = Bool
False

-- | Is this a 'TyCon', synonym or otherwise, that defines a family with
-- instances?
isOpenFamilyTyCon :: TyCon -> Bool
isOpenFamilyTyCon :: TyCon -> Bool
isOpenFamilyTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon {famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = FamTyConFlav
flav } <- TyConDetails
details
              = case FamTyConFlav
flav of
                  FamTyConFlav
OpenSynFamilyTyCon -> Bool
True
                  DataFamilyTyCon {} -> Bool
True
                  FamTyConFlav
_                  -> Bool
False
  | Bool
otherwise = Bool
False

-- | Is this a type family 'TyCon' (whether open or closed)?
isTypeFamilyTyCon :: TyCon -> Bool
isTypeFamilyTyCon :: TyCon -> Bool
isTypeFamilyTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon { famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = FamTyConFlav
flav } <- TyConDetails
details = Bool -> Bool
not (FamTyConFlav -> Bool
isDataFamFlav FamTyConFlav
flav)
  | Bool
otherwise                                   = Bool
False

-- | Is this a data family 'TyCon'?
isDataFamilyTyCon :: TyCon -> Bool
isDataFamilyTyCon :: TyCon -> Bool
isDataFamilyTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon { famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = FamTyConFlav
flav } <- TyConDetails
details = FamTyConFlav -> Bool
isDataFamFlav FamTyConFlav
flav
  | Bool
otherwise                                    = Bool
False

-- | Is this an open type family TyCon?
isOpenTypeFamilyTyCon :: TyCon -> Bool
isOpenTypeFamilyTyCon :: TyCon -> Bool
isOpenTypeFamilyTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon {famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = FamTyConFlav
OpenSynFamilyTyCon } <- TyConDetails
details = Bool
True
  | Bool
otherwise                                                = Bool
False

-- | Is this a non-empty closed type family? Returns 'Nothing' for
-- abstract or empty closed families.
isClosedSynFamilyTyConWithAxiom_maybe :: TyCon -> Maybe (CoAxiom Branched)
isClosedSynFamilyTyConWithAxiom_maybe :: TyCon -> Maybe (CoAxiom Branched)
isClosedSynFamilyTyConWithAxiom_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon {famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = ClosedSynFamilyTyCon Maybe (CoAxiom Branched)
mb} <- TyConDetails
details = Maybe (CoAxiom Branched)
mb
  | Bool
otherwise                                                    = Maybe (CoAxiom Branched)
forall a. Maybe a
Nothing

isBuiltInSynFamTyCon_maybe :: TyCon -> Maybe BuiltInSynFamily
isBuiltInSynFamTyCon_maybe :: TyCon -> Maybe BuiltInSynFamily
isBuiltInSynFamTyCon_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon {famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = BuiltInSynFamTyCon BuiltInSynFamily
ops} <- TyConDetails
details = BuiltInSynFamily -> Maybe BuiltInSynFamily
forall a. a -> Maybe a
Just BuiltInSynFamily
ops
  | Bool
otherwise                                                   = Maybe BuiltInSynFamily
forall a. Maybe a
Nothing

-- | Extract type variable naming the result of injective type family
tyConFamilyResVar_maybe :: TyCon -> Maybe Name
tyConFamilyResVar_maybe :: TyCon -> Maybe Name
tyConFamilyResVar_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon {famTcResVar :: TyConDetails -> Maybe Name
famTcResVar = Maybe Name
res} <- TyConDetails
details = Maybe Name
res
  | Bool
otherwise                                  = Maybe Name
forall a. Maybe a
Nothing

-- | @'tyConInjectivityInfo' tc@ returns @'Injective' is@ if @tc@ is an
-- injective tycon (where @is@ states for which 'tyConBinders' @tc@ is
-- injective), or 'NotInjective' otherwise.
tyConInjectivityInfo :: TyCon -> Injectivity
tyConInjectivityInfo :: TyCon -> Injectivity
tyConInjectivityInfo tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon { famTcInj :: TyConDetails -> Injectivity
famTcInj = Injectivity
inj } <- TyConDetails
details
  = Injectivity
inj
  | TyCon -> Role -> Bool
isInjectiveTyCon TyCon
tc Role
Nominal
  = [Bool] -> Injectivity
Injective (Int -> Bool -> [Bool]
forall a. Int -> a -> [a]
replicate (TyCon -> Int
tyConArity TyCon
tc) Bool
True)
  | Bool
otherwise
  = Injectivity
NotInjective

isDataFamFlav :: FamTyConFlav -> Bool
isDataFamFlav :: FamTyConFlav -> Bool
isDataFamFlav (DataFamilyTyCon {}) = Bool
True   -- Data family
isDataFamFlav FamTyConFlav
_                    = Bool
False  -- Type synonym family

-- | Is this TyCon for an associated type?
isTyConAssoc :: TyCon -> Bool
isTyConAssoc :: TyCon -> Bool
isTyConAssoc = Maybe TyCon -> Bool
forall a. Maybe a -> Bool
isJust (Maybe TyCon -> Bool) -> (TyCon -> Maybe TyCon) -> TyCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyCon -> Maybe TyCon
tyConAssoc_maybe

-- | Get the enclosing class TyCon (if there is one) for the given TyCon.
tyConAssoc_maybe :: TyCon -> Maybe TyCon
tyConAssoc_maybe :: TyCon -> Maybe TyCon
tyConAssoc_maybe = TyConFlavour TyCon -> Maybe TyCon
forall tc. TyConFlavour tc -> Maybe tc
tyConFlavourAssoc_maybe (TyConFlavour TyCon -> Maybe TyCon)
-> (TyCon -> TyConFlavour TyCon) -> TyCon -> Maybe TyCon
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyCon -> TyConFlavour TyCon
tyConFlavour

-- The unit tycon didn't used to be classed as a tuple tycon
-- but I thought that was silly so I've undone it
-- If it can't be for some reason, it should be a AlgTyCon
isTupleTyCon :: TyCon -> Bool
-- ^ Does this 'TyCon' represent a tuple?
--
-- NB: when compiling @Data.Tuple@, the tycons won't reply @True@ to
-- 'isTupleTyCon', because they are built as 'AlgTyCons'.  However they
-- get spat into the interface file as tuple tycons, so I don't think
-- it matters.
isTupleTyCon :: TyCon -> Bool
isTupleTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = TupleTyCon {} } <- TyConDetails
details = Bool
True
  | Bool
otherwise                                        = Bool
False

tyConTuple_maybe :: TyCon -> Maybe TupleSort
tyConTuple_maybe :: TyCon -> Maybe TupleSort
tyConTuple_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  , TupleTyCon { tup_sort :: AlgTyConRhs -> TupleSort
tup_sort = TupleSort
sort} <- AlgTyConRhs
rhs = TupleSort -> Maybe TupleSort
forall a. a -> Maybe a
Just TupleSort
sort
  | Bool
otherwise                            = Maybe TupleSort
forall a. Maybe a
Nothing

-- | Is this the 'TyCon' for an unboxed tuple?
isUnboxedTupleTyCon :: TyCon -> Bool
isUnboxedTupleTyCon :: TyCon -> Bool
isUnboxedTupleTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  , TupleTyCon { tup_sort :: AlgTyConRhs -> TupleSort
tup_sort = TupleSort
sort } <- AlgTyConRhs
rhs
              = Bool -> Bool
not (Boxity -> Bool
isBoxed (TupleSort -> Boxity
tupleSortBoxity TupleSort
sort))
  | Bool
otherwise = Bool
False

-- | Is this the 'TyCon' for a boxed tuple?
isBoxedTupleTyCon :: TyCon -> Bool
isBoxedTupleTyCon :: TyCon -> Bool
isBoxedTupleTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  , TupleTyCon { tup_sort :: AlgTyConRhs -> TupleSort
tup_sort = TupleSort
sort } <- AlgTyConRhs
rhs
              = Boxity -> Bool
isBoxed (TupleSort -> Boxity
tupleSortBoxity TupleSort
sort)
  | Bool
otherwise = Bool
False

-- | Is this the 'TyCon' for an unboxed sum?
isUnboxedSumTyCon :: TyCon -> Bool
isUnboxedSumTyCon :: TyCon -> Bool
isUnboxedSumTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  , SumTyCon {} <- AlgTyConRhs
rhs
              = Bool
True
  | Bool
otherwise = Bool
False

isLiftedAlgTyCon :: TyCon -> Bool
isLiftedAlgTyCon :: TyCon -> Bool
isLiftedAlgTyCon (TyCon { tyConResKind :: TyCon -> Kind
tyConResKind = Kind
res_kind, tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {} <- TyConDetails
details = Kind -> Bool
isLiftedTypeKind Kind
res_kind
  | Bool
otherwise              = Bool
False

-- | Retrieves the promoted DataCon if this is a PromotedDataCon;
isPromotedDataCon_maybe :: TyCon -> Maybe DataCon
isPromotedDataCon_maybe :: TyCon -> Maybe DataCon
isPromotedDataCon_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | PromotedDataCon { dataCon :: TyConDetails -> DataCon
dataCon = DataCon
dc } <- TyConDetails
details = DataCon -> Maybe DataCon
forall a. a -> Maybe a
Just DataCon
dc
  | Bool
otherwise                                   = Maybe DataCon
forall a. Maybe a
Nothing

-- | Is this the 'TyCon' for a /promoted/ tuple?
isPromotedTupleTyCon :: TyCon -> Bool
isPromotedTupleTyCon :: TyCon -> Bool
isPromotedTupleTyCon TyCon
tyCon
  | Just DataCon
dataCon <- TyCon -> Maybe DataCon
isPromotedDataCon_maybe TyCon
tyCon
  , TyCon -> Bool
isTupleTyCon (DataCon -> TyCon
dataConTyCon DataCon
dataCon) = Bool
True
  | Bool
otherwise                           = Bool
False

-- | Is this a PromotedDataCon?
isPromotedDataCon :: TyCon -> Bool
isPromotedDataCon :: TyCon -> Bool
isPromotedDataCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | PromotedDataCon {} <- TyConDetails
details = Bool
True
  | Bool
otherwise                     = Bool
False

-- | This function identifies PromotedDataCon's from data constructors in
-- `data T = K1 | K2`, promoted by -XDataKinds.  These type constructors
-- are printed with a tick mark 'K1 and 'K2, and similarly have a tick
-- mark added to their OccName's.
--
-- In contrast, constructors in `type data T = K1 | K2` are printed and
-- represented with their original undecorated names.
-- See Note [Type data declarations] in GHC.Rename.Module
isDataKindsPromotedDataCon :: TyCon -> Bool
isDataKindsPromotedDataCon :: TyCon -> Bool
isDataKindsPromotedDataCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | PromotedDataCon { dataCon :: TyConDetails -> DataCon
dataCon = DataCon
dc } <- TyConDetails
details
              = Bool -> Bool
not (DataCon -> Bool
isTypeDataCon DataCon
dc)
  | Bool
otherwise = Bool
False

-- | Is this 'TyCon' really meant for use at the kind level? That is,
-- should it be permitted without @DataKinds@?
isKindTyCon :: TyCon -> Bool
isKindTyCon :: TyCon -> Bool
isKindTyCon = TyCon -> Bool
forall a. Uniquable a => a -> Bool
isKindUniquable

-- | This is 'Name' really meant for use at the kind level? That is,
-- should it be permitted wihout @DataKinds@?
isKindName :: Name -> Bool
isKindName :: Name -> Bool
isKindName = Name -> Bool
forall a. Uniquable a => a -> Bool
isKindUniquable

-- | The workhorse for 'isKindTyCon' and 'isKindName'.
isKindUniquable :: Uniquable a => a -> Bool
isKindUniquable :: forall a. Uniquable a => a -> Bool
isKindUniquable a
thing = a -> Unique
forall a. Uniquable a => a -> Unique
getUnique a
thing Unique -> UniqueSet -> Bool
`memberUniqueSet` UniqueSet
kindTyConKeys

-- | These TyCons should be allowed at the kind level, even without
-- -XDataKinds.
kindTyConKeys :: UniqueSet
kindTyConKeys :: UniqueSet
kindTyConKeys = [Unique] -> UniqueSet
fromListUniqueSet ([Unique] -> UniqueSet) -> [Unique] -> UniqueSet
forall a b. (a -> b) -> a -> b
$
  -- Make sure to keep this in sync with the following:
  --
  -- - The Overview section in docs/users_guide/exts/data_kinds.rst in the GHC
  --   User's Guide.
  --
  -- - The typecheck/should_compile/T22141f.hs test case, which ensures that all
  --   of these can successfully be used without DataKinds.
  [ Unique
liftedTypeKindTyConKey, Unique
liftedRepTyConKey, Unique
constraintKindTyConKey, Unique
tYPETyConKey, Unique
cONSTRAINTTyConKey ]
  [Unique] -> [Unique] -> [Unique]
forall a. [a] -> [a] -> [a]
++ (TyCon -> [Unique]) -> [TyCon] -> [Unique]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap TyCon -> [Unique]
tycon_with_datacons [ TyCon
runtimeRepTyCon, TyCon
levityTyCon
                                   , TyCon
multiplicityTyCon
                                   , TyCon
vecCountTyCon, TyCon
vecElemTyCon ]
  where
    tycon_with_datacons :: TyCon -> [Unique]
tycon_with_datacons TyCon
tc = TyCon -> Unique
forall a. Uniquable a => a -> Unique
getUnique TyCon
tc Unique -> [Unique] -> [Unique]
forall a. a -> [a] -> [a]
: (DataCon -> Unique) -> [DataCon] -> [Unique]
forall a b. (a -> b) -> [a] -> [b]
map DataCon -> Unique
forall a. Uniquable a => a -> Unique
getUnique (TyCon -> [DataCon]
tyConDataCons TyCon
tc)

isLiftedTypeKindTyConName :: Name -> Bool
isLiftedTypeKindTyConName :: Name -> Bool
isLiftedTypeKindTyConName = (Name -> Unique -> Bool
forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
liftedTypeKindTyConKey)

-- | Identifies implicit tycons that, in particular, do not go into interface
-- files (because they are implicitly reconstructed when the interface is
-- read).
--
-- Note that:
--
-- * Associated families are implicit, as they are re-constructed from
--   the class declaration in which they reside, and
--
-- * Family instances are /not/ implicit as they represent the instance body
--   (similar to a @dfun@ does that for a class instance).
--
-- * Tuples are implicit iff they have a wired-in name
--   (namely: boxed and unboxed tuples are wired-in and implicit,
--            but constraint tuples are not)
isImplicitTyCon :: TyCon -> Bool
isImplicitTyCon :: TyCon -> Bool
isImplicitTyCon (TyCon { tyConName :: TyCon -> Name
tyConName = Name
name, tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details }) = TyConDetails -> Bool
go TyConDetails
details
  where
    go :: TyConDetails -> Bool
go (PrimTyCon {})       = Bool
True
    go (PromotedDataCon {}) = Bool
True
    go (SynonymTyCon {})    = Bool
False
    go (TcTyCon {})         = Bool
False
    go (FamilyTyCon { famTcParent :: TyConDetails -> Maybe TyCon
famTcParent = Maybe TyCon
parent }) = Maybe TyCon -> Bool
forall a. Maybe a -> Bool
isJust Maybe TyCon
parent
    go (AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs })
       | TupleTyCon {} <- AlgTyConRhs
rhs = Name -> Bool
isWiredInName Name
name
       | SumTyCon {} <- AlgTyConRhs
rhs   = Bool
True
       | Bool
otherwise            = Bool
False

tyConCType_maybe :: TyCon -> Maybe CType
tyConCType_maybe :: TyCon -> Maybe CType
tyConCType_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { tyConCType :: TyConDetails -> Maybe CType
tyConCType = Maybe CType
mb_ctype} <- TyConDetails
details = Maybe CType
mb_ctype
  | Bool
otherwise                                    = Maybe CType
forall a. Maybe a
Nothing

-- | Does this 'TyCon' have a syntactically fixed RuntimeRep when fully applied,
-- as per Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete?
--
-- False is safe. True means we're sure.
-- Does only a quick check, based on the TyCon's category.
--
-- See Note [Representation-polymorphic TyCons]
tcHasFixedRuntimeRep :: TyCon -> Bool
tcHasFixedRuntimeRep :: TyCon -> Bool
tcHasFixedRuntimeRep tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  = case AlgTyConRhs
rhs of
       AbstractTyCon {} -> Bool
False
               -- An abstract TyCon might not have a fixed runtime representation.
               -- Note that this is an entirely different matter from the concreteness
               -- of the 'TyCon', in the sense of 'isConcreteTyCon'.

       DataTyCon { data_fixed_lev :: AlgTyConRhs -> Bool
data_fixed_lev = Bool
fixed_lev } -> Bool
fixed_lev
               -- A datatype might not have a fixed levity with UnliftedDatatypes (#20423).
               -- NB: the current representation-polymorphism checks require that
               -- the representation be fully-known, including levity variables.
               -- This might be relaxed in the future (#15532).

       TupleTyCon { tup_sort :: AlgTyConRhs -> TupleSort
tup_sort = TupleSort
tuple_sort } -> Boxity -> Bool
isBoxed (TupleSort -> Boxity
tupleSortBoxity TupleSort
tuple_sort) Bool -> Bool -> Bool
||
                                               -- (# #) also has fixed rep.
                                               TyCon -> Int
tyConArity TyCon
tc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0

       SumTyCon {} -> Bool
False   -- only unboxed sums here

       NewTyCon { nt_fixed_rep :: AlgTyConRhs -> Bool
nt_fixed_rep = Bool
fixed_rep } -> Bool
fixed_rep
              -- A newtype might not have a fixed runtime representation
              -- with UnliftedNewtypes (#17360)

  | SynonymTyCon {}   <- TyConDetails
details = Bool
False   -- conservative choice
  | FamilyTyCon{}     <- TyConDetails
details = Bool
False
  | PrimTyCon{}       <- TyConDetails
details = Bool
True
  | TcTyCon{}         <- TyConDetails
details = Bool
False
  | PromotedDataCon{} <- TyConDetails
details = String -> SDoc -> Bool
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"tcHasFixedRuntimeRep datacon" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

-- | Is this 'TyCon' concrete?
-- More specifically, if 'tys' are all concrete, is (T tys) concrete?
--      (for synonyms this requires us to look at the RHS)
-- Used for representation polymorphism checks.
-- See Note [Concrete types] in GHC.Tc.Utils.Concrete
isConcreteTyCon :: TyCon -> Bool
isConcreteTyCon :: TyCon -> Bool
isConcreteTyCon tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  = case TyConDetails
details of
      AlgTyCon {}        -> Bool
True   -- Includes AbstractTyCon
      PrimTyCon {}       -> Bool
True
      PromotedDataCon {} -> Bool
True
      FamilyTyCon {}     -> Bool
False

      SynonymTyCon { synIsConcrete :: TyConDetails -> Bool
synIsConcrete = Bool
is_conc } -> Bool
is_conc

      TcTyCon {} -> String -> SDoc -> Bool
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"isConcreteTyCon" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)
                    -- isConcreteTyCon is only used on "real" tycons

{-
-----------------------------------------------
--      TcTyCon
-----------------------------------------------
-}

-- | Is this a TcTyCon? (That is, one only used during type-checking?)
isTcTyCon :: TyCon -> Bool
isTcTyCon :: TyCon -> Bool
isTcTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | TcTyCon {} <- TyConDetails
details = Bool
True
  | Bool
otherwise             = Bool
False

setTcTyConKind :: TyCon -> Kind -> TyCon
-- Update the Kind of a TcTyCon
-- The new kind is always a zonked version of its previous
-- kind, so we don't need to update any other fields.
-- See Note [The Purely Kinded Type Invariant (PKTI)] in GHC.Tc.Gen.HsType
setTcTyConKind :: TyCon -> Kind -> TyCon
setTcTyConKind TyCon
tc Kind
kind
  = Bool -> TyCon -> TyCon
forall a. HasCallStack => Bool -> a -> a
assert (TyCon -> Bool
isMonoTcTyCon TyCon
tc) (TyCon -> TyCon) -> TyCon -> TyCon
forall a b. (a -> b) -> a -> b
$
    let tc' :: TyCon
tc' = TyCon
tc { tyConKind      = kind
                 , tyConNullaryTy = mkNakedTyConTy tc' }
                 -- See Note [Sharing nullary TyConApps]
    in TyCon
tc'

isMonoTcTyCon :: TyCon -> Bool
isMonoTcTyCon :: TyCon -> Bool
isMonoTcTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | TcTyCon { tctc_is_poly :: TyConDetails -> Bool
tctc_is_poly = Bool
is_poly } <- TyConDetails
details = Bool -> Bool
not Bool
is_poly
  | Bool
otherwise                                      = Bool
False

tcTyConScopedTyVars :: TyCon -> [(Name,TcTyVar)]
tcTyConScopedTyVars :: TyCon -> [(Name, TyVar)]
tcTyConScopedTyVars tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | TcTyCon { tctc_scoped_tvs :: TyConDetails -> [(Name, TyVar)]
tctc_scoped_tvs = [(Name, TyVar)]
scoped_tvs } <- TyConDetails
details = [(Name, TyVar)]
scoped_tvs
  | Bool
otherwise = String -> SDoc -> [(Name, TyVar)]
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"tcTyConScopedTyVars" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

{-
-----------------------------------------------
--      Expand type-constructor applications
-----------------------------------------------
-}

data ExpandSynResult tyco
  = NoExpansion
  | ExpandsSyn [(TyVar,tyco)] Type [tyco]

expandSynTyCon_maybe
        :: TyCon
        -> [tyco]                 -- ^ Arguments to 'TyCon'
        -> ExpandSynResult tyco       -- ^ Returns a 'TyVar' substitution, the body
                                  -- type of the synonym (not yet substituted)
                                  -- and any arguments remaining from the
                                  -- application
-- ^ Expand a type synonym application
-- Return Nothing if the TyCon is not a synonym,
-- or if not enough arguments are supplied
expandSynTyCon_maybe :: forall tyco. TyCon -> [tyco] -> ExpandSynResult tyco
expandSynTyCon_maybe (TyCon { tyConTyVars :: TyCon -> [TyVar]
tyConTyVars = [TyVar]
tvs, tyConArity :: TyCon -> Int
tyConArity = Int
arity
                            , tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details }) [tyco]
tys
  | SynonymTyCon { synTcRhs :: TyConDetails -> Kind
synTcRhs = Kind
rhs } <- TyConDetails
details
  = if Int
arity Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
    then [(TyVar, tyco)] -> Kind -> [tyco] -> ExpandSynResult tyco
forall tyco.
[(TyVar, tyco)] -> Kind -> [tyco] -> ExpandSynResult tyco
ExpandsSyn [] Kind
rhs [tyco]
tys  -- Avoid a bit of work in the case of nullary synonyms
    else case [tyco]
tys [tyco] -> Int -> Ordering
forall a. [a] -> Int -> Ordering
`listLengthCmp` Int
arity of
              Ordering
GT -> [(TyVar, tyco)] -> Kind -> [tyco] -> ExpandSynResult tyco
forall tyco.
[(TyVar, tyco)] -> Kind -> [tyco] -> ExpandSynResult tyco
ExpandsSyn ([TyVar]
tvs [TyVar] -> [tyco] -> [(TyVar, tyco)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` [tyco]
tys) Kind
rhs (Int -> [tyco] -> [tyco]
forall a. Int -> [a] -> [a]
drop Int
arity [tyco]
tys)
              Ordering
EQ -> [(TyVar, tyco)] -> Kind -> [tyco] -> ExpandSynResult tyco
forall tyco.
[(TyVar, tyco)] -> Kind -> [tyco] -> ExpandSynResult tyco
ExpandsSyn ([TyVar]
tvs [TyVar] -> [tyco] -> [(TyVar, tyco)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` [tyco]
tys) Kind
rhs []
              Ordering
LT -> ExpandSynResult tyco
forall tyco. ExpandSynResult tyco
NoExpansion
   | Bool
otherwise
   = ExpandSynResult tyco
forall tyco. ExpandSynResult tyco
NoExpansion

----------------

-- | Check if the tycon actually refers to a proper `data` or `newtype`
--  with user defined constructors rather than one from a class or other
--  construction.

-- NB: This is only used in GHC.Tc.Gen.Export.checkPatSynParent to determine if an
-- exported tycon can have a pattern synonym bundled with it, e.g.,
-- module Foo (TyCon(.., PatSyn)) where
isTyConWithSrcDataCons :: TyCon -> Bool
isTyConWithSrcDataCons :: TyCon -> Bool
isTyConWithSrcDataCons (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs, algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = AlgTyConFlav
parent } <- TyConDetails
details
  , let isSrcParent :: Bool
isSrcParent = AlgTyConFlav -> Bool
isNoParent AlgTyConFlav
parent
              = case AlgTyConRhs
rhs of
                   DataTyCon {}  -> Bool
isSrcParent
                   NewTyCon {}   -> Bool
isSrcParent
                   TupleTyCon {} -> Bool
isSrcParent
                   AlgTyConRhs
_             -> Bool
False
  | FamilyTyCon { famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = DataFamilyTyCon {} } <- TyConDetails
details
              = Bool
True -- #14058
  | Bool
otherwise = Bool
False


-- | As 'tyConDataCons_maybe', but returns the empty list of constructors if no
-- constructors could be found
tyConDataCons :: TyCon -> [DataCon]
-- It's convenient for tyConDataCons to return the
-- empty list for type synonyms etc
tyConDataCons :: TyCon -> [DataCon]
tyConDataCons TyCon
tycon = TyCon -> Maybe [DataCon]
tyConDataCons_maybe TyCon
tycon Maybe [DataCon] -> [DataCon] -> [DataCon]
forall a. Maybe a -> a -> a
`orElse` []

-- | Determine the 'DataCon's originating from the given 'TyCon', if the 'TyCon'
-- is the sort that can have any constructors (note: this does not include
-- abstract algebraic types)
tyConDataCons_maybe :: TyCon -> Maybe [DataCon]
tyConDataCons_maybe :: TyCon -> Maybe [DataCon]
tyConDataCons_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs} <- TyConDetails
details
  = case AlgTyConRhs
rhs of
       DataTyCon { data_cons :: AlgTyConRhs -> [DataCon]
data_cons = [DataCon]
cons } -> [DataCon] -> Maybe [DataCon]
forall a. a -> Maybe a
Just [DataCon]
cons
       NewTyCon { data_con :: AlgTyConRhs -> DataCon
data_con = DataCon
con }    -> [DataCon] -> Maybe [DataCon]
forall a. a -> Maybe a
Just [DataCon
con]
       TupleTyCon { data_con :: AlgTyConRhs -> DataCon
data_con = DataCon
con }  -> [DataCon] -> Maybe [DataCon]
forall a. a -> Maybe a
Just [DataCon
con]
       SumTyCon { data_cons :: AlgTyConRhs -> [DataCon]
data_cons = [DataCon]
cons }  -> [DataCon] -> Maybe [DataCon]
forall a. a -> Maybe a
Just [DataCon]
cons
       AlgTyConRhs
_                              -> Maybe [DataCon]
forall a. Maybe a
Nothing
tyConDataCons_maybe TyCon
_ = Maybe [DataCon]
forall a. Maybe a
Nothing

-- | If the given 'TyCon' has a /single/ data constructor, i.e. it is a @data@
-- type with one alternative, a tuple type or a @newtype@ then that constructor
-- is returned. If the 'TyCon' has more than one constructor, or represents a
-- primitive or function type constructor then @Nothing@ is returned.
tyConSingleDataCon_maybe :: TyCon -> Maybe DataCon
tyConSingleDataCon_maybe :: TyCon -> Maybe DataCon
tyConSingleDataCon_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  = case AlgTyConRhs
rhs of
      DataTyCon { data_cons :: AlgTyConRhs -> [DataCon]
data_cons = [DataCon
c] } -> DataCon -> Maybe DataCon
forall a. a -> Maybe a
Just DataCon
c
      TupleTyCon { data_con :: AlgTyConRhs -> DataCon
data_con = DataCon
c }   -> DataCon -> Maybe DataCon
forall a. a -> Maybe a
Just DataCon
c
      NewTyCon { data_con :: AlgTyConRhs -> DataCon
data_con = DataCon
c }     -> DataCon -> Maybe DataCon
forall a. a -> Maybe a
Just DataCon
c
      AlgTyConRhs
_                             -> Maybe DataCon
forall a. Maybe a
Nothing
  | Bool
otherwise                        = Maybe DataCon
forall a. Maybe a
Nothing

-- | Like 'tyConSingleDataCon_maybe', but panics if 'Nothing'.
tyConSingleDataCon :: TyCon -> DataCon
tyConSingleDataCon :: TyCon -> DataCon
tyConSingleDataCon TyCon
tc
  = case TyCon -> Maybe DataCon
tyConSingleDataCon_maybe TyCon
tc of
      Just DataCon
c  -> DataCon
c
      Maybe DataCon
Nothing -> String -> SDoc -> DataCon
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"tyConDataCon" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

-- | Like 'tyConSingleDataCon_maybe', but returns 'Nothing' for newtypes.
tyConSingleAlgDataCon_maybe :: TyCon -> Maybe DataCon
tyConSingleAlgDataCon_maybe :: TyCon -> Maybe DataCon
tyConSingleAlgDataCon_maybe TyCon
tycon
  | TyCon -> Bool
isNewTyCon TyCon
tycon = Maybe DataCon
forall a. Maybe a
Nothing
  | Bool
otherwise        = TyCon -> Maybe DataCon
tyConSingleDataCon_maybe TyCon
tycon

-- | Returns @Just dcs@ if the given 'TyCon' is a @data@ type, a tuple type
-- or a sum type with data constructors dcs. If the 'TyCon' has more than one
-- constructor, or represents a primitive or function type constructor then
-- @Nothing@ is returned.
--
-- Like 'tyConDataCons_maybe', but returns 'Nothing' for newtypes.
tyConAlgDataCons_maybe :: TyCon -> Maybe [DataCon]
tyConAlgDataCons_maybe :: TyCon -> Maybe [DataCon]
tyConAlgDataCons_maybe TyCon
tycon
  | TyCon -> Bool
isNewTyCon TyCon
tycon = Maybe [DataCon]
forall a. Maybe a
Nothing
  | Bool
otherwise        = TyCon -> Maybe [DataCon]
tyConDataCons_maybe TyCon
tycon

-- | Determine the number of value constructors a 'TyCon' has. Panics if the
-- 'TyCon' is not algebraic or a tuple
tyConFamilySize  :: TyCon -> Int
tyConFamilySize :: TyCon -> Int
tyConFamilySize tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  = case AlgTyConRhs
rhs of
      DataTyCon { data_cons_size :: AlgTyConRhs -> Int
data_cons_size = Int
size } -> Int
size
      NewTyCon {}                    -> Int
1
      TupleTyCon {}                  -> Int
1
      SumTyCon { data_cons_size :: AlgTyConRhs -> Int
data_cons_size = Int
size }  -> Int
size
      AlgTyConRhs
_                              -> String -> SDoc -> Int
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"tyConFamilySize 1" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)
  | Bool
otherwise = String -> SDoc -> Int
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"tyConFamilySize 2" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

-- | Extract an 'AlgTyConRhs' with information about data constructors from an
-- algebraic or tuple 'TyCon'. Panics for any other sort of 'TyCon'
algTyConRhs :: TyCon -> AlgTyConRhs
algTyConRhs :: TyCon -> AlgTyConRhs
algTyConRhs tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs} <- TyConDetails
details = AlgTyConRhs
rhs
  | Bool
otherwise                            = String -> SDoc -> AlgTyConRhs
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"algTyConRhs" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

-- | Extract the bound type variables and type expansion of a type synonym
-- 'TyCon'. Panics if the 'TyCon' is not a synonym
newTyConRhs :: TyCon -> ([TyVar], Type)
newTyConRhs :: TyCon -> ([TyVar], Kind)
newTyConRhs tc :: TyCon
tc@(TyCon { tyConTyVars :: TyCon -> [TyVar]
tyConTyVars = [TyVar]
tvs, tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = NewTyCon { nt_rhs :: AlgTyConRhs -> Kind
nt_rhs = Kind
rhs }} <- TyConDetails
details
  = ([TyVar]
tvs, Kind
rhs)
  | Bool
otherwise
  = String -> SDoc -> ([TyVar], Kind)
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"newTyConRhs" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

-- | The number of type parameters that need to be passed to a newtype to
-- resolve it. May be less than in the definition if it can be eta-contracted.
newTyConEtadArity :: TyCon -> Int
newTyConEtadArity :: TyCon -> Int
newTyConEtadArity tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = NewTyCon { nt_etad_rhs :: AlgTyConRhs -> ([TyVar], Kind)
nt_etad_rhs = ([TyVar], Kind)
tvs_rhs }} <- TyConDetails
details
  = [TyVar] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (([TyVar], Kind) -> [TyVar]
forall a b. (a, b) -> a
fst ([TyVar], Kind)
tvs_rhs)
  | Bool
otherwise
  = String -> SDoc -> Int
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"newTyConEtadArity" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

-- | Extract the bound type variables and type expansion of an eta-contracted
-- type synonym 'TyCon'.  Panics if the 'TyCon' is not a synonym
newTyConEtadRhs :: TyCon -> ([TyVar], Type)
newTyConEtadRhs :: TyCon -> ([TyVar], Kind)
newTyConEtadRhs tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = NewTyCon { nt_etad_rhs :: AlgTyConRhs -> ([TyVar], Kind)
nt_etad_rhs = ([TyVar], Kind)
tvs_rhs }} <- TyConDetails
details = ([TyVar], Kind)
tvs_rhs
  | Bool
otherwise = String -> SDoc -> ([TyVar], Kind)
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"newTyConEtadRhs" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

-- | Extracts the @newtype@ coercion from such a 'TyCon', which can be used to
-- construct something with the @newtype@s type from its representation type
-- (right hand side). If the supplied 'TyCon' is not a @newtype@, returns
-- @Nothing@
newTyConCo_maybe :: TyCon -> Maybe (CoAxiom Unbranched)
newTyConCo_maybe :: TyCon -> Maybe (CoAxiom Unbranched)
newTyConCo_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = NewTyCon { nt_co :: AlgTyConRhs -> CoAxiom Unbranched
nt_co = CoAxiom Unbranched
co }} <- TyConDetails
details = CoAxiom Unbranched -> Maybe (CoAxiom Unbranched)
forall a. a -> Maybe a
Just CoAxiom Unbranched
co
  | Bool
otherwise                                                = Maybe (CoAxiom Unbranched)
forall a. Maybe a
Nothing

newTyConCo :: TyCon -> CoAxiom Unbranched
newTyConCo :: TyCon -> CoAxiom Unbranched
newTyConCo TyCon
tc = case TyCon -> Maybe (CoAxiom Unbranched)
newTyConCo_maybe TyCon
tc of
                 Just CoAxiom Unbranched
co -> CoAxiom Unbranched
co
                 Maybe (CoAxiom Unbranched)
Nothing -> String -> SDoc -> CoAxiom Unbranched
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"newTyConCo" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

newTyConDataCon_maybe :: TyCon -> Maybe DataCon
newTyConDataCon_maybe :: TyCon -> Maybe DataCon
newTyConDataCon_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = NewTyCon { data_con :: AlgTyConRhs -> DataCon
data_con = DataCon
con }} <- TyConDetails
details = DataCon -> Maybe DataCon
forall a. a -> Maybe a
Just DataCon
con
  | Bool
otherwise                                                    = Maybe DataCon
forall a. Maybe a
Nothing

-- | Find the \"stupid theta\" of the 'TyCon'. A \"stupid theta\" is the context
-- to the left of an algebraic type declaration, e.g. @Eq a@ in the declaration
-- @data Eq a => T a ...@. See @Note [The stupid context]@ in "GHC.Core.DataCon".
tyConStupidTheta :: TyCon -> [PredType]
tyConStupidTheta :: TyCon -> [Kind]
tyConStupidTheta tc :: TyCon
tc@(TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcStupidTheta :: TyConDetails -> [Kind]
algTcStupidTheta = [Kind]
stupid} <- TyConDetails
details = [Kind]
stupid
  | PrimTyCon {} <- TyConDetails
details                         = []
  | Bool
otherwise = String -> SDoc -> [Kind]
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"tyConStupidTheta" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc)

-- | Extract the 'TyVar's bound by a vanilla type synonym
-- and the corresponding (unsubstituted) right hand side.
synTyConDefn_maybe :: TyCon -> Maybe ([TyVar], Type)
synTyConDefn_maybe :: TyCon -> Maybe ([TyVar], Kind)
synTyConDefn_maybe (TyCon { tyConTyVars :: TyCon -> [TyVar]
tyConTyVars = [TyVar]
tyvars, tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | SynonymTyCon {synTcRhs :: TyConDetails -> Kind
synTcRhs = Kind
ty} <- TyConDetails
details
  = ([TyVar], Kind) -> Maybe ([TyVar], Kind)
forall a. a -> Maybe a
Just ([TyVar]
tyvars, Kind
ty)
  | Bool
otherwise
  = Maybe ([TyVar], Kind)
forall a. Maybe a
Nothing

-- | Extract the information pertaining to the right hand side of a type synonym
-- (@type@) declaration.
synTyConRhs_maybe :: TyCon -> Maybe Type
synTyConRhs_maybe :: TyCon -> Maybe Kind
synTyConRhs_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | SynonymTyCon {synTcRhs :: TyConDetails -> Kind
synTcRhs = Kind
rhs} <- TyConDetails
details  = Kind -> Maybe Kind
forall a. a -> Maybe a
Just Kind
rhs
  | Bool
otherwise                                 = Maybe Kind
forall a. Maybe a
Nothing

-- | Extract the flavour of a type family (with all the extra information that
-- it carries)
famTyConFlav_maybe :: TyCon -> Maybe FamTyConFlav
famTyConFlav_maybe :: TyCon -> Maybe FamTyConFlav
famTyConFlav_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | FamilyTyCon {famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = FamTyConFlav
flav} <- TyConDetails
details = FamTyConFlav -> Maybe FamTyConFlav
forall a. a -> Maybe a
Just FamTyConFlav
flav
  | Bool
otherwise                                 = Maybe FamTyConFlav
forall a. Maybe a
Nothing

-- | Is this 'TyCon' that for a class instance?
isClassTyCon :: TyCon -> Bool
isClassTyCon :: TyCon -> Bool
isClassTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = ClassTyCon {}} <- TyConDetails
details = Bool
True
  | Bool
otherwise                                          = Bool
False

-- | If this 'TyCon' is that for a class instance, return the class it is for.
-- Otherwise returns @Nothing@
tyConClass_maybe :: TyCon -> Maybe Class
tyConClass_maybe :: TyCon -> Maybe Class
tyConClass_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = ClassTyCon Class
clas Name
_} <- TyConDetails
details = Class -> Maybe Class
forall a. a -> Maybe a
Just Class
clas
  | Bool
otherwise                                              = Maybe Class
forall a. Maybe a
Nothing

-- | Return the associated types of the 'TyCon', if any
tyConATs :: TyCon -> [TyCon]
tyConATs :: TyCon -> [TyCon]
tyConATs (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = ClassTyCon Class
clas Name
_} <- TyConDetails
details = Class -> [TyCon]
classATs Class
clas
  | Bool
otherwise                                              = []

----------------------------------------------------------------------------
-- | Is this 'TyCon' that for a data family instance?
isFamInstTyCon :: TyCon -> Bool
isFamInstTyCon :: TyCon -> Bool
isFamInstTyCon (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = DataFamInstTyCon {} } <- TyConDetails
details = Bool
True
  | Bool
otherwise                                                 = Bool
False

tyConFamInstSig_maybe :: TyCon -> Maybe (TyCon, [Type], CoAxiom Unbranched)
tyConFamInstSig_maybe :: TyCon -> Maybe (TyCon, [Kind], CoAxiom Unbranched)
tyConFamInstSig_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = DataFamInstTyCon CoAxiom Unbranched
ax TyCon
f [Kind]
ts } <- TyConDetails
details = (TyCon, [Kind], CoAxiom Unbranched)
-> Maybe (TyCon, [Kind], CoAxiom Unbranched)
forall a. a -> Maybe a
Just (TyCon
f, [Kind]
ts, CoAxiom Unbranched
ax)
  | Bool
otherwise                                                      = Maybe (TyCon, [Kind], CoAxiom Unbranched)
forall a. Maybe a
Nothing

-- | If this 'TyCon' is that of a data family instance, return the family in question
-- and the instance types. Otherwise, return @Nothing@
tyConFamInst_maybe :: TyCon -> Maybe (TyCon, [Type])
tyConFamInst_maybe :: TyCon -> Maybe (TyCon, [Kind])
tyConFamInst_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = DataFamInstTyCon CoAxiom Unbranched
_ TyCon
f [Kind]
ts } <- TyConDetails
details = (TyCon, [Kind]) -> Maybe (TyCon, [Kind])
forall a. a -> Maybe a
Just (TyCon
f, [Kind]
ts)
  | Bool
otherwise                                                     = Maybe (TyCon, [Kind])
forall a. Maybe a
Nothing

-- | If this 'TyCon' is that of a data family instance, return a 'TyCon' which
-- represents a coercion identifying the representation type with the type
-- instance family.  Otherwise, return @Nothing@
tyConFamilyCoercion_maybe :: TyCon -> Maybe (CoAxiom Unbranched)
tyConFamilyCoercion_maybe :: TyCon -> Maybe (CoAxiom Unbranched)
tyConFamilyCoercion_maybe (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon {algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = DataFamInstTyCon CoAxiom Unbranched
ax TyCon
_ [Kind]
_ } <- TyConDetails
details = CoAxiom Unbranched -> Maybe (CoAxiom Unbranched)
forall a. a -> Maybe a
Just CoAxiom Unbranched
ax
  | Bool
otherwise                                                     = Maybe (CoAxiom Unbranched)
forall a. Maybe a
Nothing

-- | Extract any 'RuntimeRepInfo' from this TyCon
tyConPromDataConInfo :: TyCon -> PromDataConInfo
tyConPromDataConInfo :: TyCon -> PromDataConInfo
tyConPromDataConInfo (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | PromotedDataCon { promDcInfo :: TyConDetails -> PromDataConInfo
promDcInfo = PromDataConInfo
rri } <- TyConDetails
details = PromDataConInfo
rri
  | Bool
otherwise                                       = PromDataConInfo
NoPromInfo
  -- could panic in that second case. But Douglas Adams told me not to.

{-
Note [Constructor tag allocation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When typechecking we need to allocate constructor tags to constructors.
They are allocated based on the position in the data_cons field of TyCon,
with the first constructor getting fIRST_TAG.

We used to pay linear cost per constructor, with each constructor looking up
its relative index in the constructor list. That was quadratic and prohibitive
for large data types with more than 10k constructors.

The current strategy is to build a NameEnv with a mapping from constructor's
Name to ConTag and pass it down to buildDataCon for efficient lookup.

Relevant ticket: #14657
-}

mkTyConTagMap :: TyCon -> NameEnv ConTag
mkTyConTagMap :: TyCon -> NameEnv Int
mkTyConTagMap TyCon
tycon =
  [(Name, Int)] -> NameEnv Int
forall a. [(Name, a)] -> NameEnv a
mkNameEnv ([(Name, Int)] -> NameEnv Int) -> [(Name, Int)] -> NameEnv Int
forall a b. (a -> b) -> a -> b
$ (DataCon -> Name) -> [DataCon] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map DataCon -> Name
forall a. NamedThing a => a -> Name
getName (TyCon -> [DataCon]
tyConDataCons TyCon
tycon) [Name] -> [Int] -> [(Name, Int)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` [Int
fIRST_TAG..]
  -- See Note [Constructor tag allocation]

{-
************************************************************************
*                                                                      *
\subsection[TyCon-instances]{Instance declarations for @TyCon@}
*                                                                      *
************************************************************************

@TyCon@s are compared by comparing their @Unique@s.
-}

instance Eq TyCon where
    TyCon
a == :: TyCon -> TyCon -> Bool
== TyCon
b = TyCon -> Unique
forall a. Uniquable a => a -> Unique
getUnique TyCon
a Unique -> Unique -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon -> Unique
forall a. Uniquable a => a -> Unique
getUnique TyCon
b
    TyCon
a /= :: TyCon -> TyCon -> Bool
/= TyCon
b = TyCon -> Unique
forall a. Uniquable a => a -> Unique
getUnique TyCon
a Unique -> Unique -> Bool
forall a. Eq a => a -> a -> Bool
/= TyCon -> Unique
forall a. Uniquable a => a -> Unique
getUnique TyCon
b

instance Uniquable TyCon where
    getUnique :: TyCon -> Unique
getUnique TyCon
tc = TyCon -> Unique
tyConUnique TyCon
tc

instance Outputable TyCon where
  -- At the moment a promoted TyCon has the same Name as its
  -- corresponding TyCon, so we add the quote to distinguish it here
  ppr :: TyCon -> SDoc
ppr TyCon
tc = TyCon -> SDoc
pprPromotionQuote TyCon
tc SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TyCon -> Name
tyConName TyCon
tc) SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc
pp_tc
    where
      pp_tc :: SDoc
pp_tc = (PprStyle -> SDoc) -> SDoc
getPprStyle ((PprStyle -> SDoc) -> SDoc) -> (PprStyle -> SDoc) -> SDoc
forall a b. (a -> b) -> a -> b
$ \PprStyle
sty ->
              (Bool -> SDoc) -> SDoc
forall doc. IsOutput doc => (Bool -> doc) -> doc
getPprDebug ((Bool -> SDoc) -> SDoc) -> (Bool -> SDoc) -> SDoc
forall a b. (a -> b) -> a -> b
$ \Bool
debug ->
               if ((Bool
debug Bool -> Bool -> Bool
|| PprStyle -> Bool
dumpStyle PprStyle
sty) Bool -> Bool -> Bool
&& TyCon -> Bool
isTcTyCon TyCon
tc)
                  then String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"[tc]"
                  else SDoc
forall doc. IsOutput doc => doc
empty

tyConFlavour :: TyCon -> TyConFlavour TyCon
tyConFlavour :: TyCon -> TyConFlavour TyCon
tyConFlavour (TyCon { tyConDetails :: TyCon -> TyConDetails
tyConDetails = TyConDetails
details })
  | AlgTyCon { algTcFlavour :: TyConDetails -> AlgTyConFlav
algTcFlavour = AlgTyConFlav
parent, algTcRhs :: TyConDetails -> AlgTyConRhs
algTcRhs = AlgTyConRhs
rhs } <- TyConDetails
details
  = case AlgTyConFlav
parent of
      ClassTyCon {} -> TyConFlavour TyCon
forall tc. TyConFlavour tc
ClassFlavour
      AlgTyConFlav
_ -> case AlgTyConRhs
rhs of
                  TupleTyCon { tup_sort :: AlgTyConRhs -> TupleSort
tup_sort = TupleSort
sort }
                                     -> Boxity -> TyConFlavour TyCon
forall tc. Boxity -> TyConFlavour tc
TupleFlavour (TupleSort -> Boxity
tupleSortBoxity TupleSort
sort)
                  SumTyCon {}        -> TyConFlavour TyCon
forall tc. TyConFlavour tc
SumFlavour
                  DataTyCon {}       -> TyConFlavour TyCon
forall tc. TyConFlavour tc
DataTypeFlavour
                  NewTyCon {}        -> TyConFlavour TyCon
forall tc. TyConFlavour tc
NewtypeFlavour
                  AbstractTyCon {}   -> TyConFlavour TyCon
forall tc. TyConFlavour tc
AbstractTypeFlavour

  | FamilyTyCon { famTcFlav :: TyConDetails -> FamTyConFlav
famTcFlav = FamTyConFlav
flav, famTcParent :: TyConDetails -> Maybe TyCon
famTcParent = Maybe TyCon
parent } <- TyConDetails
details
  = case FamTyConFlav
flav of
      DataFamilyTyCon{}            -> TypeOrData -> Maybe TyCon -> TyConFlavour TyCon
forall tc. TypeOrData -> Maybe tc -> TyConFlavour tc
OpenFamilyFlavour TypeOrData
IAmData Maybe TyCon
parent
      FamTyConFlav
OpenSynFamilyTyCon           -> TypeOrData -> Maybe TyCon -> TyConFlavour TyCon
forall tc. TypeOrData -> Maybe tc -> TyConFlavour tc
OpenFamilyFlavour TypeOrData
IAmType Maybe TyCon
parent
      ClosedSynFamilyTyCon{}       -> TyConFlavour TyCon
forall tc. TyConFlavour tc
ClosedTypeFamilyFlavour
      FamTyConFlav
AbstractClosedSynFamilyTyCon -> TyConFlavour TyCon
forall tc. TyConFlavour tc
ClosedTypeFamilyFlavour
      BuiltInSynFamTyCon{}         -> TyConFlavour TyCon
forall tc. TyConFlavour tc
ClosedTypeFamilyFlavour

  | SynonymTyCon {} <- TyConDetails
details                  = TyConFlavour TyCon
forall tc. TyConFlavour tc
TypeSynonymFlavour
  | PrimTyCon {} <- TyConDetails
details                     = TyConFlavour TyCon
forall tc. TyConFlavour tc
BuiltInTypeFlavour
  | PromotedDataCon {} <- TyConDetails
details               = TyConFlavour TyCon
forall tc. TyConFlavour tc
PromotedDataConFlavour
  | TcTyCon { tctc_flavour :: TyConDetails -> TyConFlavour TyCon
tctc_flavour = TyConFlavour TyCon
flav } <-TyConDetails
details   = TyConFlavour TyCon
flav

-- | Can this flavour of 'TyCon' appear unsaturated?
tcFlavourMustBeSaturated :: TyConFlavour tc -> Bool
tcFlavourMustBeSaturated :: forall tc. TyConFlavour tc -> Bool
tcFlavourMustBeSaturated TyConFlavour tc
ClassFlavour            = Bool
False
tcFlavourMustBeSaturated TyConFlavour tc
DataTypeFlavour         = Bool
False
tcFlavourMustBeSaturated TyConFlavour tc
NewtypeFlavour          = Bool
False
tcFlavourMustBeSaturated TupleFlavour{}          = Bool
False
tcFlavourMustBeSaturated TyConFlavour tc
SumFlavour              = Bool
False
tcFlavourMustBeSaturated AbstractTypeFlavour {}  = Bool
False
tcFlavourMustBeSaturated TyConFlavour tc
BuiltInTypeFlavour      = Bool
False
tcFlavourMustBeSaturated TyConFlavour tc
PromotedDataConFlavour  = Bool
False
tcFlavourMustBeSaturated (OpenFamilyFlavour TypeOrData
td Maybe tc
_)= case TypeOrData
td of { TypeOrData
IAmData -> Bool
False; TypeOrData
IAmType -> Bool
True }
tcFlavourMustBeSaturated TyConFlavour tc
TypeSynonymFlavour      = Bool
True
tcFlavourMustBeSaturated TyConFlavour tc
ClosedTypeFamilyFlavour = Bool
True

-- | Is this flavour of 'TyCon' an open type family or a data family?
tcFlavourIsOpen :: TyConFlavour tc -> Bool
tcFlavourIsOpen :: forall tc. TyConFlavour tc -> Bool
tcFlavourIsOpen OpenFamilyFlavour{}     = Bool
True
tcFlavourIsOpen TyConFlavour tc
ClosedTypeFamilyFlavour = Bool
False
tcFlavourIsOpen TyConFlavour tc
ClassFlavour            = Bool
False
tcFlavourIsOpen TyConFlavour tc
DataTypeFlavour         = Bool
False
tcFlavourIsOpen TyConFlavour tc
NewtypeFlavour          = Bool
False
tcFlavourIsOpen TupleFlavour{}          = Bool
False
tcFlavourIsOpen TyConFlavour tc
SumFlavour              = Bool
False
tcFlavourIsOpen AbstractTypeFlavour {}  = Bool
False
tcFlavourIsOpen TyConFlavour tc
BuiltInTypeFlavour      = Bool
False
tcFlavourIsOpen TyConFlavour tc
PromotedDataConFlavour  = Bool
False
tcFlavourIsOpen TyConFlavour tc
TypeSynonymFlavour      = Bool
False

pprPromotionQuote :: TyCon -> SDoc
-- Promoted data constructors already have a tick in their OccName
pprPromotionQuote :: TyCon -> SDoc
pprPromotionQuote TyCon
tc =
  (PprStyle -> SDoc) -> SDoc
getPprStyle ((PprStyle -> SDoc) -> SDoc) -> (PprStyle -> SDoc) -> SDoc
forall a b. (a -> b) -> a -> b
$ \PprStyle
sty ->
    let
      name :: OccName
name   = TyCon -> OccName
forall a. NamedThing a => a -> OccName
getOccName TyCon
tc
      ticked :: Bool
ticked = TyCon -> Bool
isDataKindsPromotedDataCon TyCon
tc Bool -> Bool -> Bool
&& PprStyle -> QueryPromotionTick
promTick PprStyle
sty (OccName -> PromotedItem
PromotedItemDataCon OccName
name)
    in
      if Bool
ticked
      then Char -> SDoc
forall doc. IsLine doc => Char -> doc
char Char
'\''
      else SDoc
forall doc. IsOutput doc => doc
empty

instance NamedThing TyCon where
    getName :: TyCon -> Name
getName = TyCon -> Name
tyConName

instance Data.Data TyCon where
    -- don't traverse?
    toConstr :: TyCon -> Constr
toConstr TyCon
_   = String -> Constr
abstractConstr String
"TyCon"
    gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c TyCon
gunfold forall b r. Data b => c (b -> r) -> c r
_ forall r. r -> c r
_  = String -> Constr -> c TyCon
forall a. HasCallStack => String -> a
error String
"gunfold"
    dataTypeOf :: TyCon -> DataType
dataTypeOf TyCon
_ = String -> DataType
mkNoRepType String
"TyCon"

instance Binary Injectivity where
    put_ :: WriteBinHandle -> Injectivity -> IO ()
put_ WriteBinHandle
bh Injectivity
NotInjective   = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
0
    put_ WriteBinHandle
bh (Injective [Bool]
xs) = WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
1 IO () -> IO () -> IO ()
forall a b. IO a -> IO b -> IO b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> WriteBinHandle -> [Bool] -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh [Bool]
xs

    get :: ReadBinHandle -> IO Injectivity
get ReadBinHandle
bh = do { h <- ReadBinHandle -> IO Word8
getByte ReadBinHandle
bh
                ; case h of
                    Word8
0 -> Injectivity -> IO Injectivity
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Injectivity
NotInjective
                    Word8
_ -> do { xs <- ReadBinHandle -> IO [Bool]
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh
                            ; return (Injective xs) } }

-- | Returns whether or not this 'TyCon' is definite, or a hole
-- that may be filled in at some later point.  See Note [Skolem abstract data]
tyConSkolem :: TyCon -> Bool
tyConSkolem :: TyCon -> Bool
tyConSkolem = Name -> Bool
isHoleName (Name -> Bool) -> (TyCon -> Name) -> TyCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyCon -> Name
tyConName

-- Note [Skolem abstract data]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Skolem abstract data arises from data declarations in an hsig file.
--
-- The best analogy is to interpret the types declared in signature files as
-- elaborating to universally quantified type variables; e.g.,
--
--    unit p where
--        signature H where
--            data T
--            data S
--        module M where
--            import H
--            f :: (T ~ S) => a -> b
--            f x = x
--
-- elaborates as (with some fake structural types):
--
--    p :: forall t s. { f :: forall a b. t ~ s => a -> b }
--    p = { f = \x -> x } -- ill-typed
--
-- It is clear that inside p, t ~ s is not provable (and
-- if we tried to write a function to cast t to s, that
-- would not work), but if we call p @Int @Int, clearly Int ~ Int
-- is provable.  The skolem variables are all distinct from
-- one another, but we can't make assumptions like "f is
-- inaccessible", because the skolem variables will get
-- instantiated eventually!
--
-- Skolem abstractness can apply to "non-abstract" data as well):
--
--    unit p where
--        signature H1 where
--            data T = MkT
--        signature H2 where
--            data T = MkT
--        module M where
--            import qualified H1
--            import qualified H2
--            f :: (H1.T ~ H2.T) => a -> b
--            f x = x
--
-- This is why the test is on the original name of the TyCon,
-- not whether it is abstract or not.