{-# LANGUAGE OverloadedStrings  #-}
{-# LANGUAGE MultiWayIf  #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.StgToJS.Linker.Utils
-- Copyright   :  (c) The University of Glasgow 2001
-- License     :  BSD-style (see the file LICENSE)
--
-- Maintainer  :  Jeffrey Young  <jeffrey.young@iohk.io>
--                Luite Stegeman <luite.stegeman@iohk.io>
--                Sylvain Henry  <sylvain.henry@iohk.io>
--                Josh Meredith  <josh.meredith@iohk.io>
-- Stability   :  experimental
--
-- Various utilies used in the JS Linker
--
-----------------------------------------------------------------------------

module GHC.StgToJS.Linker.Utils
  ( jsExeFileName
  , getInstalledPackageLibDirs
  , getInstalledPackageHsLibs
  , commonCppDefs
  , decodeModifiedUTF8
  )
where

import           System.FilePath
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as Char8
import           Data.ByteString (ByteString)

import          GHC.Driver.Session

import          GHC.Data.ShortText
import          GHC.Unit.State
import          GHC.Unit.Types

import          GHC.StgToJS.Types

import           Prelude
import GHC.Platform
import Data.List (isPrefixOf)

import GHC.Builtin.Types
import Language.Haskell.Syntax.Basic
import GHC.Types.Name
import GHC.StgToJS.Ids
import GHC.JS.Ident
import GHC.Core.DataCon
import GHC.Data.FastString

-- | Retrieve library directories provided by the @UnitId@ in @UnitState@
getInstalledPackageLibDirs :: UnitState -> UnitId -> [ShortText]
getInstalledPackageLibDirs :: UnitState -> UnitId -> [ShortText]
getInstalledPackageLibDirs UnitState
us = [ShortText]
-> (GenericUnitInfo
      PackageId
      PackageName
      UnitId
      ModuleName
      (GenModule (GenUnit UnitId))
    -> [ShortText])
-> Maybe
     (GenericUnitInfo
        PackageId
        PackageName
        UnitId
        ModuleName
        (GenModule (GenUnit UnitId)))
-> [ShortText]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [ShortText]
forall a. Monoid a => a
mempty GenericUnitInfo
  PackageId
  PackageName
  UnitId
  ModuleName
  (GenModule (GenUnit UnitId))
-> [ShortText]
forall srcpkgid srcpkgname uid modulename mod.
GenericUnitInfo srcpkgid srcpkgname uid modulename mod
-> [ShortText]
unitLibraryDirs (Maybe
   (GenericUnitInfo
      PackageId
      PackageName
      UnitId
      ModuleName
      (GenModule (GenUnit UnitId)))
 -> [ShortText])
-> (UnitId
    -> Maybe
         (GenericUnitInfo
            PackageId
            PackageName
            UnitId
            ModuleName
            (GenModule (GenUnit UnitId))))
-> UnitId
-> [ShortText]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. UnitState
-> UnitId
-> Maybe
     (GenericUnitInfo
        PackageId
        PackageName
        UnitId
        ModuleName
        (GenModule (GenUnit UnitId)))
lookupUnitId UnitState
us

-- | Retrieve the names of the libraries provided by @UnitId@
getInstalledPackageHsLibs :: UnitState -> UnitId -> [ShortText]
getInstalledPackageHsLibs :: UnitState -> UnitId -> [ShortText]
getInstalledPackageHsLibs UnitState
us = [ShortText]
-> (GenericUnitInfo
      PackageId
      PackageName
      UnitId
      ModuleName
      (GenModule (GenUnit UnitId))
    -> [ShortText])
-> Maybe
     (GenericUnitInfo
        PackageId
        PackageName
        UnitId
        ModuleName
        (GenModule (GenUnit UnitId)))
-> [ShortText]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [ShortText]
forall a. Monoid a => a
mempty GenericUnitInfo
  PackageId
  PackageName
  UnitId
  ModuleName
  (GenModule (GenUnit UnitId))
-> [ShortText]
forall srcpkgid srcpkgname uid modulename mod.
GenericUnitInfo srcpkgid srcpkgname uid modulename mod
-> [ShortText]
unitLibraries (Maybe
   (GenericUnitInfo
      PackageId
      PackageName
      UnitId
      ModuleName
      (GenModule (GenUnit UnitId)))
 -> [ShortText])
-> (UnitId
    -> Maybe
         (GenericUnitInfo
            PackageId
            PackageName
            UnitId
            ModuleName
            (GenModule (GenUnit UnitId))))
-> UnitId
-> [ShortText]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. UnitState
-> UnitId
-> Maybe
     (GenericUnitInfo
        PackageId
        PackageName
        UnitId
        ModuleName
        (GenModule (GenUnit UnitId)))
lookupUnitId UnitState
us

-- | A constant holding the JavaScript executable Filename extension
jsexeExtension :: String
jsexeExtension :: [Char]
jsexeExtension = [Char]
"jsexe"

-- | CPP definitions that are inserted into every .pp file
commonCppDefs :: Bool -> ByteString
commonCppDefs :: Bool -> ByteString
commonCppDefs Bool
profiling = case Bool
profiling of
  Bool
True  -> ByteString
commonCppDefs_profiled
  Bool
False -> ByteString
commonCppDefs_vanilla

-- | CPP definitions for normal operation and profiling. Use CAFs for
-- commonCppDefs_* so that they are shared for every CPP file
commonCppDefs_vanilla, commonCppDefs_profiled :: ByteString
commonCppDefs_vanilla :: ByteString
commonCppDefs_vanilla  = Bool -> ByteString
genCommonCppDefs Bool
False
commonCppDefs_profiled :: ByteString
commonCppDefs_profiled = Bool -> ByteString
genCommonCppDefs Bool
True

-- | Generate macros MK_TUP* for tuples sized 2+.
genMkTup :: Bool -> Int -> ByteString
genMkTup :: Bool -> Int -> ByteString
genMkTup Bool
profiling Int
n = [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
  [ ByteString
"#define MK_TUP", ByteString
sn                                                          -- #define MK_TUPn
  , ByteString
"(", ByteString -> [ByteString] -> ByteString
B.intercalate ByteString
"," [ByteString]
xs, ByteString
")"                                                -- (x1,x2,...)
  , ByteString
"(h$c", ByteString
sn, ByteString
"("                                                               -- (h$cn(
  , FastString -> ByteString
bytesFS FastString
symbol, ByteString
","                                                           -- h$ghczmprimZCGHCziTupleziZnT_con_e,                                                                        -- ,
  , ByteString -> [ByteString] -> ByteString
B.intercalate ByteString
"," ([ByteString] -> ByteString) -> [ByteString] -> ByteString
forall a b. (a -> b) -> a -> b
$ (ByteString -> ByteString) -> [ByteString] -> [ByteString]
forall a b. (a -> b) -> [a] -> [b]
map (\ByteString
x -> ByteString
"(" ByteString -> ByteString -> ByteString
forall a. Semigroup a => a -> a -> a
<> ByteString
x ByteString -> ByteString -> ByteString
forall a. Semigroup a => a -> a -> a
<> ByteString
")") [ByteString]
xs                            -- (x1),(x2),(...)
  , if Bool
profiling then ByteString
",h$currentThread?h$currentThread.ccs:h$CCS_SYSTEM" else ByteString
"" -- ,h$currentThread?h$currentThread.ccs:h$CCS_SYSTEM
  , ByteString
"))\n"                                                                        -- ))\n
  ]
  where
    xs :: [ByteString]
xs = Int -> [ByteString] -> [ByteString]
forall a. Int -> [a] -> [a]
take Int
n ([ByteString] -> [ByteString]) -> [ByteString] -> [ByteString]
forall a b. (a -> b) -> a -> b
$ (Int -> ByteString) -> [Int] -> [ByteString]
forall a b. (a -> b) -> [a] -> [b]
map ((ByteString
"x" ByteString -> ByteString -> ByteString
forall a. Semigroup a => a -> a -> a
<>) (ByteString -> ByteString)
-> (Int -> ByteString) -> Int -> ByteString
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ByteString
Char8.pack ([Char] -> ByteString) -> (Int -> [Char]) -> Int -> ByteString
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> [Char]
forall a. Show a => a -> [Char]
show) ([Int
1..] :: [Int])
    sn :: ByteString
sn = [Char] -> ByteString
Char8.pack ([Char] -> ByteString) -> [Char] -> ByteString
forall a b. (a -> b) -> a -> b
$ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
n
    symbol :: FastString
symbol = Ident -> FastString
identFS (Ident -> FastString) -> Ident -> FastString
forall a b. (a -> b) -> a -> b
$ Id -> Maybe Int -> IdType -> GenModule (GenUnit UnitId) -> Ident
makeIdentForId (DataCon -> Id
dataConWorkId (DataCon -> Id) -> DataCon -> Id
forall a b. (a -> b) -> a -> b
$ Boxity -> Int -> DataCon
tupleDataCon Boxity
Boxed Int
n) Maybe Int
forall a. Maybe a
Nothing IdType
IdConEntry GenModule (GenUnit UnitId)
mod
    name :: Name
name = Boxity -> Int -> Name
tupleDataConName Boxity
Boxed Int
n
    mod :: GenModule (GenUnit UnitId)
mod = case Name -> Maybe (GenModule (GenUnit UnitId))
nameModule_maybe Name
name of
      Just GenModule (GenUnit UnitId)
m -> GenModule (GenUnit UnitId)
m
      Maybe (GenModule (GenUnit UnitId))
Nothing -> [Char] -> GenModule (GenUnit UnitId)
forall a. HasCallStack => [Char] -> a
error [Char]
"Tuple constructor is missing a module"

-- | Generate CPP Definitions depending on a profiled or normal build. This
-- occurs at link time.
genCommonCppDefs :: Bool -> ByteString
genCommonCppDefs :: Bool -> ByteString
genCommonCppDefs Bool
profiling = [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
  [
  -- constants
    let mk_int_def :: [Char] -> a -> ByteString
mk_int_def [Char]
n a
v   = ByteString
"#define " ByteString -> ByteString -> ByteString
forall a. Semigroup a => a -> a -> a
<> [Char] -> ByteString
Char8.pack [Char]
n ByteString -> ByteString -> ByteString
forall a. Semigroup a => a -> a -> a
<> ByteString
" (" ByteString -> ByteString -> ByteString
forall a. Semigroup a => a -> a -> a
<> [Char] -> ByteString
Char8.pack (a -> [Char]
forall a. Show a => a -> [Char]
show a
v) ByteString -> ByteString -> ByteString
forall a. Semigroup a => a -> a -> a
<> ByteString
")\n"
        -- generate "#define CLOSURE_TYPE_xyz (num)" defines
        mk_closure_def :: ClosureType -> ByteString
mk_closure_def ClosureType
t = [Char] -> Int -> ByteString
forall {a}. Show a => [Char] -> a -> ByteString
mk_int_def (ClosureType -> [Char]
ctJsName ClosureType
t) (ClosureType -> Int
ctNum ClosureType
t)
        closure_defs :: [ByteString]
closure_defs     = (ClosureType -> ByteString) -> [ClosureType] -> [ByteString]
forall a b. (a -> b) -> [a] -> [b]
map ClosureType -> ByteString
mk_closure_def [ClosureType
forall a. Bounded a => a
minBound..ClosureType
forall a. Bounded a => a
maxBound]
        -- generate "#define THREAD_xyz_xyz (num)" defines
        mk_thread_def :: ThreadStatus -> ByteString
mk_thread_def ThreadStatus
t  = [Char] -> Int -> ByteString
forall {a}. Show a => [Char] -> a -> ByteString
mk_int_def (ThreadStatus -> [Char]
threadStatusJsName ThreadStatus
t) (ThreadStatus -> Int
threadStatusNum ThreadStatus
t)
        thread_defs :: [ByteString]
thread_defs      = (ThreadStatus -> ByteString) -> [ThreadStatus] -> [ByteString]
forall a b. (a -> b) -> [a] -> [b]
map ThreadStatus -> ByteString
mk_thread_def [ThreadStatus
forall a. Bounded a => a
minBound..ThreadStatus
forall a. Bounded a => a
maxBound]
    in [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat ([ByteString]
closure_defs [ByteString] -> [ByteString] -> [ByteString]
forall a. [a] -> [a] -> [a]
++ [ByteString]
thread_defs)

  -- low-level heap object manipulation macros
  , [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat ((Int -> ByteString) -> [Int] -> [ByteString]
forall a b. (a -> b) -> [a] -> [b]
map (Bool -> Int -> ByteString
genMkTup Bool
profiling) [Int
2..Int
10])

  , ByteString
"#define TUP2_1(x) ((x).d1)\n"
  , ByteString
"#define TUP2_2(x) ((x).d2)\n"

  -- GHCJS.Prim.JSVal
  , if Bool
profiling
      then ByteString
"#define MK_JSVAL(x) (h$c1(h$ghczminternalZCGHCziInternalziJSziPrimziJSVal_con_e, (x), h$CCS_SYSTEM))\n"
      else ByteString
"#define MK_JSVAL(x) (h$c1(h$ghczminternalZCGHCziInternalziJSziPrimziJSVal_con_e, (x)))\n"
  ,  ByteString
"#define JSVAL_VAL(x) ((x).d1)\n"

  -- GHCJS.Prim.JSException
  , if Bool
profiling
      then ByteString
"#define MK_JSEXCEPTION(msg,hsMsg) (h$c2(h$ghczminternalZCGHCziInternalziJSziPrimziJSException_con_e,(msg),(hsMsg),h$CCS_SYSTEM))\n"
      else ByteString
"#define MK_JSEXCEPTION(msg,hsMsg) (h$c2(h$ghczminternalZCGHCziInternalziJSziPrimziJSException_con_e,(msg),(hsMsg)))\n"

  -- Exception dictionary for JSException
  , ByteString
"#define HS_JSEXCEPTION_EXCEPTION h$ghczminternalZCGHCziInternalziJSziPrimzizdfExceptionJSException\n"

  -- SomeException
  , if Bool
profiling
      then ByteString
"#define MK_SOMEEXCEPTION(dict,except) (h$c2(h$ghczminternalZCGHCziInternalziExceptionziTypeziSomeException_con_e,(dict),(except),h$CCS_SYSTEM))\n"
      else ByteString
"#define MK_SOMEEXCEPTION(dict,except) (h$c2(h$ghczminternalZCGHCziInternalziExceptionziTypeziSomeException_con_e,(dict),(except)))\n"

  -- GHC.Ptr.Ptr
  , if Bool
profiling
      then ByteString
"#define MK_PTR(val,offset) (h$c2(h$ghczminternalZCGHCziInternalziPtrziPtr_con_e, (val), (offset), h$CCS_SYSTEM))\n"
      else ByteString
"#define MK_PTR(val,offset) (h$c2(h$ghczminternalZCGHCziInternalziPtrziPtr_con_e, (val), (offset)))\n"

  -- Put Addr# in ByteArray# or at Addr# (same thing)
  , ByteString
"#define PUT_ADDR(a,o,va,vo) if (!(a).arr) (a).arr = []; (a).arr[o] = va; (a).dv.setInt32(o,vo,true);\n"
  , ByteString
"#define GET_ADDR(a,o,ra,ro) var ra = (((a).arr && (a).arr[o]) ? (a).arr[o] : null); var ro = (a).dv.getInt32(o,true);\n"

  -- Data.Maybe.Maybe
  , ByteString
"#define HS_NOTHING h$ghczminternalZCGHCziInternalziMaybeziNothing\n"
  , ByteString
"#define IS_NOTHING(cl) ((cl).f === h$ghczminternalZCGHCziInternalziMaybeziNothing_con_e)\n"
  , ByteString
"#define IS_JUST(cl) ((cl).f === h$ghczminternalZCGHCziInternalziMaybeziJust_con_e)\n"
  , ByteString
"#define JUST_VAL(jj) ((jj).d1)\n"
  -- "#define HS_NOTHING h$nothing\n"
  , if Bool
profiling
      then ByteString
"#define MK_JUST(val) (h$c1(h$ghczminternalZCGHCziInternalziMaybeziJust_con_e, (val), h$CCS_SYSTEM))\n"
      else ByteString
"#define MK_JUST(val) (h$c1(h$ghczminternalZCGHCziInternalziMaybeziJust_con_e, (val)))\n"

  -- Data.List
  , ByteString
"#define HS_NIL h$ghczmprimZCGHCziTypesziZMZN\n"
  , ByteString
"#define HS_NIL_CON h$ghczmprimZCGHCziTypesziZMZN_con_e\n"
  , ByteString
"#define IS_CONS(cl) ((cl).f === h$ghczmprimZCGHCziTypesziZC_con_e)\n"
  , ByteString
"#define IS_NIL(cl) ((cl).f === h$ghczmprimZCGHCziTypesziZMZN_con_e)\n"
  , ByteString
"#define CONS_HEAD(cl) ((cl).d1)\n"
  , ByteString
"#define CONS_TAIL(cl) ((cl).d2)\n"
  , if Bool
profiling
      then [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
        [ ByteString
"#define MK_CONS(head,tail) (h$c2(h$ghczmprimZCGHCziTypesziZC_con_e, (head), (tail), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_CONS_CC(head,tail,cc) (h$c2(h$ghczmprimZCGHCziTypesziZC_con_e, (head), (tail), (cc)))\n"
        ]
      else [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
        [ ByteString
"#define MK_CONS(head,tail) (h$c2(h$ghczmprimZCGHCziTypesziZC_con_e, (head), (tail)))\n"
        , ByteString
"#define MK_CONS_CC(head,tail,cc) (h$c2(h$ghczmprimZCGHCziTypesziZC_con_e, (head), (tail)))\n"
        ]

  -- Data.Text
  , ByteString
"#define DATA_TEXT_ARRAY(x) ((x).d1)\n"
  , ByteString
"#define DATA_TEXT_OFFSET(x) ((x).d2.d1)\n"
  , ByteString
"#define DATA_TEXT_LENGTH(x) ((x).d2.d2)\n"

  -- Data.Text.Lazy
  , ByteString
"#define LAZY_TEXT_IS_CHUNK(x) ((x).f.a === 2)\n"
  , ByteString
"#define LAZY_TEXT_IS_NIL(x) ((x).f.a === 1)\n"
  , ByteString
"#define LAZY_TEXT_CHUNK_HEAD(x) ((x))\n"
  , ByteString
"#define LAZY_TEXT_CHUNK_TAIL(x) ((x).d2.d3)\n"

  -- black holes
  -- can we skip the indirection for black holes?
  , ByteString
"#define IS_BLACKHOLE(x) (typeof (x) === 'object' && (x) && (x).f && (x).f.t === CLOSURE_TYPE_BLACKHOLE)\n"
  , ByteString
"#define BLACKHOLE_TID(bh) ((bh).d1)\n"
  , ByteString
"#define SET_BLACKHOLE_TID(bh,tid) ((bh).d1 = (tid))\n"
  , ByteString
"#define BLACKHOLE_QUEUE(bh) ((bh).d2)\n"
  , ByteString
"#define SET_BLACKHOLE_QUEUE(bh,val) ((bh).d2 = (val))\n"

  -- resumable thunks
  , ByteString
"#define MAKE_RESUMABLE(closure,stack) { (closure).f = h$resume_e; (closure).d1 = (stack), (closure).d2 = null; }\n"

  -- making a thunk
  , ByteString
"#define MK_UPD_THUNK(closure) h$c1(h$upd_thunk_e,(closure))\n"

  -- general deconstruction
  , ByteString
"#define IS_THUNK(x) ((x).f.t === CLOSURE_TYPE_THUNK)\n"
  , ByteString
"#define CONSTR_TAG(x) ((x).f.a)\n"

  -- retrieve a numeric value that's possibly stored as an indirection
  , ByteString
"#define IS_WRAPPED_NUMBER(val) ((typeof(val)==='object')&&(val).f === h$unbox_e)\n"
  , ByteString
"#define UNWRAP_NUMBER(val) ((typeof(val) === 'number')?(val):(val).d1)\n"

  -- generic lazy values
  , if Bool
profiling
      then [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
        [ ByteString
"#define MK_LAZY(fun) (h$c1(h$lazy_e, (fun), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_LAZY_CC(fun,cc) (h$c1(h$lazy_e, (fun), (cc)))\n"
        ]
      else [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
        [ ByteString
"#define MK_LAZY(fun) (h$c1(h$lazy_e, (fun)))\n"
        , ByteString
"#define MK_LAZY_CC(fun,cc) (h$c1(h$lazy_e, (fun)))\n"
        ]

  -- generic data constructors and selectors
  , if Bool
profiling
      then [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
        [ ByteString
"#define MK_DATA1_1(val) (h$c1(h$data1_e, (val), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_DATA1_2(val1,val2) (h$c2(h$data1_e, (val1), (val2), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_DATA2_1(val) (h$c1(h$data2_e, (val), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_DATA2_2(val1,val2) (h$c2(h$data1_e, (val1), (val2), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_SELECT1(val) (h$c1(h$select1_e, (val), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_SELECT2(val) (h$c1(h$select2_e, (val), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_AP1(fun,val) (h$c2(h$ap1_e, (fun), (val), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_AP2(fun,val1,val2) (h$c3(h$ap2_e, (fun), (val1), (val2), h$CCS_SYSTEM))\n"
        , ByteString
"#define MK_AP3(fun,val1,val2,val3) (h$c4(h$ap3_e, (fun), (val1), (val2), (val3), h$CCS_SYSTEM))\n"
        ]
      else [ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
        [ ByteString
"#define MK_DATA1_1(val) (h$c1(h$data1_e, (val)))\n"
        , ByteString
"#define MK_DATA1_2(val1,val2) (h$c2(h$data1_e, (val1), (val2)))\n"
        , ByteString
"#define MK_DATA2_1(val) (h$c1(h$data2_e, (val)))\n"
        , ByteString
"#define MK_DATA2_2(val1,val2) (h$c2(h$data2_e, (val1), (val2)))\n"
        , ByteString
"#define MK_SELECT1(val) (h$c1(h$select1_e, (val)))\n"
        , ByteString
"#define MK_SELECT2(val) (h$c1(h$select2_e, (val)))\n"
        , ByteString
"#define MK_AP1(fun,val) (h$c2(h$ap1_e,(fun),(val)))\n"
        , ByteString
"#define MK_AP2(fun,val1,val2) (h$c3(h$ap2_e,(fun),(val1),(val2)))\n"
        , ByteString
"#define MK_AP3(fun,val1,val2,val3) (h$c4(h$ap3_e, (fun), (val1), (val2), (val3)))\n"
        ]

  -- unboxed tuple returns
  -- , "#define RETURN_UBX_TUP1(x) return x;\n"
  , ByteString
"#define RETURN_UBX_TUP2(x1,x2) { h$ret1 = (x2); return (x1); }\n"
  , ByteString
"#define RETURN_UBX_TUP3(x1,x2,x3) { h$ret1 = (x2); h$ret2 = (x3); return (x1); }\n"
  , ByteString
"#define RETURN_UBX_TUP4(x1,x2,x3,x4) { h$ret1 = (x2); h$ret2 = (x3); h$ret3 = (x4); return (x1); }\n"
  , ByteString
"#define RETURN_UBX_TUP5(x1,x2,x3,x4,x5) { h$ret1 = (x2); h$ret2 = (x3); h$ret3 = (x4); h$ret4 = (x5); return (x1); }\n"
  , ByteString
"#define RETURN_UBX_TUP6(x1,x2,x3,x4,x5,x6) { h$ret1 = (x2); h$ret2 = (x3); h$ret3 = (x4); h$ret4 = (x5); h$ret5 = (x6); return (x1); }\n"
  , ByteString
"#define RETURN_UBX_TUP7(x1,x2,x3,x4,x5,x6,x7) { h$ret1 = (x2); h$ret2 = (x3); h$ret3 = (x4); h$ret4 = (x5); h$ret5 = (x6); h$ret6 = (x7); return (x1); }\n"
  , ByteString
"#define RETURN_UBX_TUP8(x1,x2,x3,x4,x5,x6,x7,x8) { h$ret1 = (x2); h$ret2 = (x3); h$ret3 = (x4); h$ret4 = (x5); h$ret5 = (x6); h$ret6 = (x7); h$ret7 = (x8); return (x1); }\n"
  , ByteString
"#define RETURN_UBX_TUP9(x1,x2,x3,x4,x5,x6,x7,x8,x9) { h$ret1 = (x2); h$ret2 = (x3); h$ret3 = (x4); h$ret4 = (x5); h$ret5 = (x6); h$ret6 = (x7); h$ret7 = (x8); h$ret8 = (x9); return (x1); }\n"
  , ByteString
"#define RETURN_UBX_TUP10(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10) { h$ret1 = (x2); h$ret2 = (x3); h$ret3 = (x4); h$ret4 = (x5); h$ret5 = (x6); h$ret6 = (x7); h$ret7 = (x8); h$ret8 = (x9); h$ret9 = (x10); return (x1); }\n"

  , ByteString
"#define RETURN_INT64(h,l) RETURN_UBX_TUP2((h)|0,(l)>>>0)\n"
  , ByteString
"#define RETURN_WORD64(h,l) RETURN_UBX_TUP2((h)>>>0,(l)>>>0)\n"
  , ByteString
"#define RETURN_ADDR(a,o) RETURN_UBX_TUP2(a,o)\n"

  , ByteString
"#define CALL_UBX_TUP2(r1,r2,c) { (r1) = (c); (r2) = h$ret1; }\n"
  , ByteString
"#define CALL_UBX_TUP3(r1,r2,r3,c) { (r1) = (c); (r2) = h$ret1; (r3) = h$ret2; }\n"
  , ByteString
"#define CALL_UBX_TUP4(r1,r2,r3,r4,c) { (r1) = (c); (r2) = h$ret1; (r3) = h$ret2; (r4) = h$ret3; }\n"
  , ByteString
"#define CALL_UBX_TUP5(r1,r2,r3,r4,r5,c) { (r1) = (c); (r2) = h$ret1; (r3) = h$ret2; (r4) = h$ret3; (r5) = h$ret4; }\n"
  , ByteString
"#define CALL_UBX_TUP6(r1,r2,r3,r4,r5,r6,c) { (r1) = (c); (r2) = h$ret1; (r3) = h$ret2; (r4) = h$ret3; (r5) = h$ret4; (r6) = h$ret5; }\n"
  , ByteString
"#define CALL_UBX_TUP7(r1,r2,r3,r4,r5,r6,r7,c) { (r1) = (c); (r2) = h$ret1; (r3) = h$ret2; (r4) = h$ret3; (r5) = h$ret4; (r6) = h$ret5; (r7) = h$ret6; }\n"
  , ByteString
"#define CALL_UBX_TUP8(r1,r2,r3,r4,r5,r6,r7,r8,c) { (r1) = (c); (r2) = h$ret1; (r3) = h$ret2; (r4) = h$ret3; (r5) = h$ret4; (r6) = h$ret5; (r7) = h$ret6; (r8) = h$ret7; }\n"
  , ByteString
"#define CALL_UBX_TUP9(r1,r2,r3,r4,r5,r6,r7,r8,r9,c) { (r1) = (c); (r2) = h$ret1; (r3) = h$ret2; (r4) = h$ret3; (r5) = h$ret4; (r6) = h$ret5; (r7) = h$ret6; (r8) = h$ret7; (r9) = h$ret8; }\n"
  , ByteString
"#define CALL_UBX_TUP10(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,c) { (r1) = (c); (r2) = h$ret1; (r3) = h$ret2; (r4) = h$ret3; (r5) = h$ret4; (r6) = h$ret5; (r7) = h$ret6; (r8) = h$ret7; (r9) = h$ret8; (r10) = h$ret9; }\n"
  ]

-- | Construct the Filename for the "binary" of Haskell code compiled to
-- JavaScript.
jsExeFileName :: DynFlags -> FilePath
jsExeFileName :: DynFlags -> [Char]
jsExeFileName DynFlags
dflags
  | Just [Char]
s <- DynFlags -> Maybe [Char]
outputFile_ DynFlags
dflags =
      -- unmunge the extension
      let s' :: [Char]
s' = [Char] -> [Char] -> [Char]
forall {a}. Eq a => [a] -> [a] -> [a]
dropPrefix [Char]
"js_" (Int -> [Char] -> [Char]
forall a. Int -> [a] -> [a]
drop Int
1 ([Char] -> [Char]) -> [Char] -> [Char]
forall a b. (a -> b) -> a -> b
$ [Char] -> [Char]
takeExtension [Char]
s)
      in if [Char] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
Prelude.null [Char]
s'
           then [Char] -> [Char]
dropExtension [Char]
s [Char] -> [Char] -> [Char]
<.> [Char]
jsexeExtension
           else [Char] -> [Char]
dropExtension [Char]
s [Char] -> [Char] -> [Char]
<.> [Char]
s'
  | Bool
otherwise =
      if Platform -> OS
platformOS (DynFlags -> Platform
targetPlatform DynFlags
dflags) OS -> OS -> Bool
forall a. Eq a => a -> a -> Bool
== OS
OSMinGW32
           then [Char]
"main.jsexe"
           else [Char]
"a.jsexe"
  where
    dropPrefix :: [a] -> [a] -> [a]
dropPrefix [a]
prefix [a]
xs
      | [a]
prefix [a] -> [a] -> Bool
forall a. Eq a => [a] -> [a] -> Bool
`isPrefixOf` [a]
xs = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
drop ([a] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
prefix) [a]
xs
      | Bool
otherwise              = [a]
xs

-- GHC produces string literals in ByteString.
-- When ByteString has all bytes UTF-8 compatbile we make attempt to
-- represent it as FastString.
-- Otherwise (for example when string literal encodes long integers or zero bytes) we
-- leave it as is.
-- Having zero bytes points that this literal never was assumed to be a Modified UTF8 compatible.
decodeModifiedUTF8 :: B.ByteString -> Maybe FastString
decodeModifiedUTF8 :: ByteString -> Maybe FastString
decodeModifiedUTF8 ByteString
bs
  | (Word8 -> Bool) -> ByteString -> Bool
B.any (Word8 -> Word8 -> Bool
forall a. Eq a => a -> a -> Bool
==Word8
0) ByteString
bs         = Maybe FastString
forall a. Maybe a
Nothing
  | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ ByteString -> Bool
B.isValidUtf8 ByteString
bs = Maybe FastString
forall a. Maybe a
Nothing
  | Bool
otherwise              = FastString -> Maybe FastString
forall a. a -> Maybe a
Just (FastString -> Maybe FastString)
-> (ByteString -> FastString) -> ByteString -> Maybe FastString
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ByteString -> FastString
mkFastStringByteString (ByteString -> Maybe FastString) -> ByteString -> Maybe FastString
forall a b. (a -> b) -> a -> b
$ ByteString
bs