ghc-internal-9.1001.0: Basic libraries
Copyright(c) The University of Glasgow 2002
Licensesee libraries/base/LICENSE
Maintainerghc-devs@haskell.org
Stabilityinternal
Portabilitynon-portable (GHC Extensions)
Safe HaskellUnsafe
LanguageHaskell2010

GHC.Internal.Exts

Description

GHC Extensions: this is the Approved Way to get at GHC-specific extensions.

Note: no other base module should import this module.

Synopsis

Pointer types

data Ptr a Source #

A value of type Ptr a represents a pointer to an object, or an array of objects, which may be marshalled to or from Haskell values of type a.

The type a will often be an instance of class Storable which provides the marshalling operations. However this is not essential, and you can provide your own operations to access the pointer. For example you might write small foreign functions to get or set the fields of a C struct.

Constructors

Ptr Addr# 

Instances

Instances details
Generic1 (URec (Ptr ()) :: k -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec (Ptr ()) :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec (Ptr ()) :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UAddr" 'PrefixI 'True) (S1 ('MetaSel ('Just "uAddr#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UAddr :: k -> Type)))

Methods

from1 :: forall (a :: k). URec (Ptr ()) a -> Rep1 (URec (Ptr ()) :: k -> Type) a Source #

to1 :: forall (a :: k). Rep1 (URec (Ptr ()) :: k -> Type) a -> URec (Ptr ()) a Source #

Data a => Data (Ptr a) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) Source #

toConstr :: Ptr a -> Constr Source #

dataTypeOf :: Ptr a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

Foldable (UAddr :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UAddr m -> m Source #

foldMap :: Monoid m => (a -> m) -> UAddr a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UAddr a -> m Source #

foldr :: (a -> b -> b) -> b -> UAddr a -> b Source #

foldr' :: (a -> b -> b) -> b -> UAddr a -> b Source #

foldl :: (b -> a -> b) -> b -> UAddr a -> b Source #

foldl' :: (b -> a -> b) -> b -> UAddr a -> b Source #

foldr1 :: (a -> a -> a) -> UAddr a -> a Source #

foldl1 :: (a -> a -> a) -> UAddr a -> a Source #

toList :: UAddr a -> [a] Source #

null :: UAddr a -> Bool Source #

length :: UAddr a -> Int Source #

elem :: Eq a => a -> UAddr a -> Bool Source #

maximum :: Ord a => UAddr a -> a Source #

minimum :: Ord a => UAddr a -> a Source #

sum :: Num a => UAddr a -> a Source #

product :: Num a => UAddr a -> a Source #

Traversable (UAddr :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UAddr a -> f (UAddr b) Source #

sequenceA :: Applicative f => UAddr (f a) -> f (UAddr a) Source #

mapM :: Monad m => (a -> m b) -> UAddr a -> m (UAddr b) Source #

sequence :: Monad m => UAddr (m a) -> m (UAddr a) Source #

Storable (Ptr a) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Foreign.Storable

Methods

sizeOf :: Ptr a -> Int Source #

alignment :: Ptr a -> Int Source #

peekElemOff :: Ptr (Ptr a) -> Int -> IO (Ptr a) Source #

pokeElemOff :: Ptr (Ptr a) -> Int -> Ptr a -> IO () Source #

peekByteOff :: Ptr b -> Int -> IO (Ptr a) Source #

pokeByteOff :: Ptr b -> Int -> Ptr a -> IO () Source #

peek :: Ptr (Ptr a) -> IO (Ptr a) Source #

poke :: Ptr (Ptr a) -> Ptr a -> IO () Source #

Show (Ptr a) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Ptr

Methods

showsPrec :: Int -> Ptr a -> ShowS Source #

show :: Ptr a -> String Source #

showList :: [Ptr a] -> ShowS Source #

Eq (Ptr a) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Ptr

Methods

(==) :: Ptr a -> Ptr a -> Bool Source #

(/=) :: Ptr a -> Ptr a -> Bool Source #

Ord (Ptr a) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Ptr

Methods

compare :: Ptr a -> Ptr a -> Ordering Source #

(<) :: Ptr a -> Ptr a -> Bool Source #

(<=) :: Ptr a -> Ptr a -> Bool Source #

(>) :: Ptr a -> Ptr a -> Bool Source #

(>=) :: Ptr a -> Ptr a -> Bool Source #

max :: Ptr a -> Ptr a -> Ptr a Source #

min :: Ptr a -> Ptr a -> Ptr a Source #

Functor (URec (Ptr ()) :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b Source #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a Source #

Generic (URec (Ptr ()) p) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec (Ptr ()) p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec (Ptr ()) p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UAddr" 'PrefixI 'True) (S1 ('MetaSel ('Just "uAddr#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UAddr :: Type -> Type)))

Methods

from :: URec (Ptr ()) p -> Rep (URec (Ptr ()) p) x Source #

to :: Rep (URec (Ptr ()) p) x -> URec (Ptr ()) p Source #

Eq (URec (Ptr ()) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

Ord (URec (Ptr ()) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering Source #

(<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p Source #

min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p Source #

data URec (Ptr ()) (p :: k) Source #

Used for marking occurrences of Addr#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec (Ptr ()) (p :: k) = UAddr {}
type Rep1 (URec (Ptr ()) :: k -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec (Ptr ()) :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UAddr" 'PrefixI 'True) (S1 ('MetaSel ('Just "uAddr#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UAddr :: k -> Type)))
type Rep (URec (Ptr ()) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec (Ptr ()) p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UAddr" 'PrefixI 'True) (S1 ('MetaSel ('Just "uAddr#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UAddr :: Type -> Type)))

data FunPtr a Source #

A value of type FunPtr a is a pointer to a function callable from foreign code. The type a will normally be a foreign type, a function type with zero or more arguments where

A value of type FunPtr a may be a pointer to a foreign function, either returned by another foreign function or imported with a a static address import like

foreign import ccall "stdlib.h &free"
  p_free :: FunPtr (Ptr a -> IO ())

or a pointer to a Haskell function created using a wrapper stub declared to produce a FunPtr of the correct type. For example:

type Compare = Int -> Int -> Bool
foreign import ccall "wrapper"
  mkCompare :: Compare -> IO (FunPtr Compare)

Calls to wrapper stubs like mkCompare allocate storage, which should be released with freeHaskellFunPtr when no longer required.

To convert FunPtr values to corresponding Haskell functions, one can define a dynamic stub for the specific foreign type, e.g.

type IntFunction = CInt -> IO ()
foreign import ccall "dynamic"
  mkFun :: FunPtr IntFunction -> IntFunction

Constructors

FunPtr Addr# 

Instances

Instances details
Storable (FunPtr a) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Foreign.Storable

Methods

sizeOf :: FunPtr a -> Int Source #

alignment :: FunPtr a -> Int Source #

peekElemOff :: Ptr (FunPtr a) -> Int -> IO (FunPtr a) Source #

pokeElemOff :: Ptr (FunPtr a) -> Int -> FunPtr a -> IO () Source #

peekByteOff :: Ptr b -> Int -> IO (FunPtr a) Source #

pokeByteOff :: Ptr b -> Int -> FunPtr a -> IO () Source #

peek :: Ptr (FunPtr a) -> IO (FunPtr a) Source #

poke :: Ptr (FunPtr a) -> FunPtr a -> IO () Source #

Show (FunPtr a) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Ptr

Eq (FunPtr a) Source # 
Instance details

Defined in GHC.Internal.Ptr

Methods

(==) :: FunPtr a -> FunPtr a -> Bool Source #

(/=) :: FunPtr a -> FunPtr a -> Bool Source #

Ord (FunPtr a) Source # 
Instance details

Defined in GHC.Internal.Ptr

Methods

compare :: FunPtr a -> FunPtr a -> Ordering Source #

(<) :: FunPtr a -> FunPtr a -> Bool Source #

(<=) :: FunPtr a -> FunPtr a -> Bool Source #

(>) :: FunPtr a -> FunPtr a -> Bool Source #

(>=) :: FunPtr a -> FunPtr a -> Bool Source #

max :: FunPtr a -> FunPtr a -> FunPtr a Source #

min :: FunPtr a -> FunPtr a -> FunPtr a Source #

Other primitive types

data Word Source #

A Word is an unsigned integral type, with the same size as Int.

Constructors

W# Word# 

Instances

Instances details
Bits Word Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Bits

FiniteBits Word Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Bits

Data Word Source #

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word Source #

toConstr :: Word -> Constr Source #

dataTypeOf :: Word -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) Source #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

Bounded Word Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Enum Word Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Storable Word Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Foreign.Storable

Ix Word Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Ix

Num Word Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Num

Read Word Source #

@since base-4.5.0.0

Instance details

Defined in GHC.Internal.Read

Integral Word Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Real

Real Word Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Real

Show Word Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Show

Eq Word 
Instance details

Defined in GHC.Classes

Methods

(==) :: Word -> Word -> Bool Source #

(/=) :: Word -> Word -> Bool Source #

Ord Word 
Instance details

Defined in GHC.Classes

Generic1 (URec Word :: k -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Word :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Word :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Word a -> Rep1 (URec Word :: k -> Type) a Source #

to1 :: forall (a :: k). Rep1 (URec Word :: k -> Type) a -> URec Word a Source #

Foldable (UWord :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UWord m -> m Source #

foldMap :: Monoid m => (a -> m) -> UWord a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UWord a -> m Source #

foldr :: (a -> b -> b) -> b -> UWord a -> b Source #

foldr' :: (a -> b -> b) -> b -> UWord a -> b Source #

foldl :: (b -> a -> b) -> b -> UWord a -> b Source #

foldl' :: (b -> a -> b) -> b -> UWord a -> b Source #

foldr1 :: (a -> a -> a) -> UWord a -> a Source #

foldl1 :: (a -> a -> a) -> UWord a -> a Source #

toList :: UWord a -> [a] Source #

null :: UWord a -> Bool Source #

length :: UWord a -> Int Source #

elem :: Eq a => a -> UWord a -> Bool Source #

maximum :: Ord a => UWord a -> a Source #

minimum :: Ord a => UWord a -> a Source #

sum :: Num a => UWord a -> a Source #

product :: Num a => UWord a -> a Source #

Traversable (UWord :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UWord a -> f (UWord b) Source #

sequenceA :: Applicative f => UWord (f a) -> f (UWord a) Source #

mapM :: Monad m => (a -> m b) -> UWord a -> m (UWord b) Source #

sequence :: Monad m => UWord (m a) -> m (UWord a) Source #

Functor (URec Word :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b Source #

(<$) :: a -> URec Word b -> URec Word a Source #

Generic (URec Word p) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Word p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Word p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: Type -> Type)))

Methods

from :: URec Word p -> Rep (URec Word p) x Source #

to :: Rep (URec Word p) x -> URec Word p Source #

Show (URec Word p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Eq (URec Word p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Word p -> URec Word p -> Bool Source #

(/=) :: URec Word p -> URec Word p -> Bool Source #

Ord (URec Word p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec Word p -> URec Word p -> Ordering Source #

(<) :: URec Word p -> URec Word p -> Bool Source #

(<=) :: URec Word p -> URec Word p -> Bool Source #

(>) :: URec Word p -> URec Word p -> Bool Source #

(>=) :: URec Word p -> URec Word p -> Bool Source #

max :: URec Word p -> URec Word p -> URec Word p Source #

min :: URec Word p -> URec Word p -> URec Word p Source #

data URec Word (p :: k) Source #

Used for marking occurrences of Word#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Word (p :: k) = UWord {}
type Rep1 (URec Word :: k -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Word :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: k -> Type)))
type Rep (URec Word p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Word p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: Type -> Type)))

data Float Source #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Constructors

F# Float# 

Instances

Instances details
Data Float Source #

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float Source #

toConstr :: Float -> Constr Source #

dataTypeOf :: Float -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) Source #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

Enum Float Source #

@since base-2.01

fromEnum just truncates its argument, beware of all sorts of overflows.

List generators have extremely peculiar behavior, mandated by Haskell Report 2010:

>>> [0..1.5 :: Float]
[0.0,1.0,2.0]
Instance details

Defined in GHC.Internal.Float

Floating Float Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Float

RealFloat Float Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Float

Storable Float Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Foreign.Storable

Num Float Source #

@since base-2.01

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero. Neither addition nor multiplication are associative or distributive:

>>> (0.1 + 0.1 :: Float) + 0.5 == 0.1 + (0.1 + 0.5)
False
>>> (0.1 + 0.2 :: Float) * 0.9 == 0.1 * 0.9 + 0.2 * 0.9
False
>>> (0.1 * 0.1 :: Float) * 0.9 == 0.1 * (0.1 * 0.9)
False
Instance details

Defined in GHC.Internal.Float

Read Float Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Fractional Float Source #

@since base-2.01

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero.

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
>>> map (/ 0) [-1, 0, 1 :: Float]
[-Infinity,NaN,Infinity]
>>> map (* 0) $ map (/ 0) [-1, 0, 1 :: Float]
[NaN,NaN,NaN]
Instance details

Defined in GHC.Internal.Float

Real Float Source #

@since base-2.01

Beware that toRational generates garbage for non-finite arguments:

>>> toRational (1/0 :: Float)
340282366920938463463374607431768211456 % 1
>>> toRational (0/0 :: Float)
510423550381407695195061911147652317184 % 1
Instance details

Defined in GHC.Internal.Float

RealFrac Float Source #

@since base-2.01

Beware that results for non-finite arguments are garbage:

>>> [ f x | f <- [round, floor, ceiling], x <- [-1/0, 0/0, 1/0 :: Float] ] :: [Int]
[0,0,0,0,0,0,0,0,0]
>>> map properFraction [-1/0, 0/0, 1/0] :: [(Int, Float)]
[(0,0.0),(0,0.0),(0,0.0)]

and get even more non-sensical if you ask for Integer instead of Int.

Instance details

Defined in GHC.Internal.Float

Methods

properFraction :: Integral b => Float -> (b, Float) Source #

truncate :: Integral b => Float -> b Source #

round :: Integral b => Float -> b Source #

ceiling :: Integral b => Float -> b Source #

floor :: Integral b => Float -> b Source #

Show Float Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Float

Eq Float

Note that due to the presence of NaN, Float's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Float)
False

Also note that Float's Eq instance does not satisfy extensionality:

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Float -> Float -> Bool Source #

(/=) :: Float -> Float -> Bool Source #

Ord Float

See instance Ord Double for discussion of deviations from IEEE 754 standard.

Instance details

Defined in GHC.Classes

Generic1 (URec Float :: k -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Float :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Float :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Float a -> Rep1 (URec Float :: k -> Type) a Source #

to1 :: forall (a :: k). Rep1 (URec Float :: k -> Type) a -> URec Float a Source #

Foldable (UFloat :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UFloat m -> m Source #

foldMap :: Monoid m => (a -> m) -> UFloat a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UFloat a -> m Source #

foldr :: (a -> b -> b) -> b -> UFloat a -> b Source #

foldr' :: (a -> b -> b) -> b -> UFloat a -> b Source #

foldl :: (b -> a -> b) -> b -> UFloat a -> b Source #

foldl' :: (b -> a -> b) -> b -> UFloat a -> b Source #

foldr1 :: (a -> a -> a) -> UFloat a -> a Source #

foldl1 :: (a -> a -> a) -> UFloat a -> a Source #

toList :: UFloat a -> [a] Source #

null :: UFloat a -> Bool Source #

length :: UFloat a -> Int Source #

elem :: Eq a => a -> UFloat a -> Bool Source #

maximum :: Ord a => UFloat a -> a Source #

minimum :: Ord a => UFloat a -> a Source #

sum :: Num a => UFloat a -> a Source #

product :: Num a => UFloat a -> a Source #

Traversable (UFloat :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UFloat a -> f (UFloat b) Source #

sequenceA :: Applicative f => UFloat (f a) -> f (UFloat a) Source #

mapM :: Monad m => (a -> m b) -> UFloat a -> m (UFloat b) Source #

sequence :: Monad m => UFloat (m a) -> m (UFloat a) Source #

Functor (URec Float :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b Source #

(<$) :: a -> URec Float b -> URec Float a Source #

Generic (URec Float p) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

type Rep (URec Float p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: Type -> Type)))

Methods

from :: URec Float p -> Rep (URec Float p) x Source #

to :: Rep (URec Float p) x -> URec Float p Source #

Show (URec Float p) Source # 
Instance details

Defined in GHC.Internal.Generics

Eq (URec Float p) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Float p -> URec Float p -> Bool Source #

(/=) :: URec Float p -> URec Float p -> Bool Source #

Ord (URec Float p) Source # 
Instance details

Defined in GHC.Internal.Generics

data URec Float (p :: k) Source #

Used for marking occurrences of Float#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Float (p :: k) = UFloat {}
type Rep1 (URec Float :: k -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Float :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: k -> Type)))
type Rep (URec Float p) Source # 
Instance details

Defined in GHC.Internal.Generics

type Rep (URec Float p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: Type -> Type)))

data Int Source #

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using minBound and maxBound from the Bounded class.

Constructors

I# Int# 

Instances

Instances details
Bits Int Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Bits

FiniteBits Int Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Bits

Data Int Source #

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int Source #

toConstr :: Int -> Constr Source #

dataTypeOf :: Int -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) Source #

gmapT :: (forall b. Data b => b -> b) -> Int -> Int Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

Bounded Int Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Enum Int Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Storable Int Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Foreign.Storable

Ix Int Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Ix

Num Int Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Num

Read Int Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Integral Int Source #

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

quot :: Int -> Int -> Int Source #

rem :: Int -> Int -> Int Source #

div :: Int -> Int -> Int Source #

mod :: Int -> Int -> Int Source #

quotRem :: Int -> Int -> (Int, Int) Source #

divMod :: Int -> Int -> (Int, Int) Source #

toInteger :: Int -> Integer Source #

Real Int Source #

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Show Int Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Show

Eq Int 
Instance details

Defined in GHC.Classes

Methods

(==) :: Int -> Int -> Bool Source #

(/=) :: Int -> Int -> Bool Source #

Ord Int 
Instance details

Defined in GHC.Classes

Methods

compare :: Int -> Int -> Ordering Source #

(<) :: Int -> Int -> Bool Source #

(<=) :: Int -> Int -> Bool Source #

(>) :: Int -> Int -> Bool Source #

(>=) :: Int -> Int -> Bool Source #

max :: Int -> Int -> Int Source #

min :: Int -> Int -> Int Source #

Generic1 (URec Int :: k -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Int :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Int :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UInt" 'PrefixI 'True) (S1 ('MetaSel ('Just "uInt#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UInt :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Int a -> Rep1 (URec Int :: k -> Type) a Source #

to1 :: forall (a :: k). Rep1 (URec Int :: k -> Type) a -> URec Int a Source #

Foldable (UInt :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UInt m -> m Source #

foldMap :: Monoid m => (a -> m) -> UInt a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UInt a -> m Source #

foldr :: (a -> b -> b) -> b -> UInt a -> b Source #

foldr' :: (a -> b -> b) -> b -> UInt a -> b Source #

foldl :: (b -> a -> b) -> b -> UInt a -> b Source #

foldl' :: (b -> a -> b) -> b -> UInt a -> b Source #

foldr1 :: (a -> a -> a) -> UInt a -> a Source #

foldl1 :: (a -> a -> a) -> UInt a -> a Source #

toList :: UInt a -> [a] Source #

null :: UInt a -> Bool Source #

length :: UInt a -> Int Source #

elem :: Eq a => a -> UInt a -> Bool Source #

maximum :: Ord a => UInt a -> a Source #

minimum :: Ord a => UInt a -> a Source #

sum :: Num a => UInt a -> a Source #

product :: Num a => UInt a -> a Source #

Traversable (UInt :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UInt a -> f (UInt b) Source #

sequenceA :: Applicative f => UInt (f a) -> f (UInt a) Source #

mapM :: Monad m => (a -> m b) -> UInt a -> m (UInt b) Source #

sequence :: Monad m => UInt (m a) -> m (UInt a) Source #

Functor (URec Int :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b Source #

(<$) :: a -> URec Int b -> URec Int a Source #

Generic (URec Int p) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Int p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Int p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UInt" 'PrefixI 'True) (S1 ('MetaSel ('Just "uInt#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UInt :: Type -> Type)))

Methods

from :: URec Int p -> Rep (URec Int p) x Source #

to :: Rep (URec Int p) x -> URec Int p Source #

Show (URec Int p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Eq (URec Int p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Int p -> URec Int p -> Bool Source #

(/=) :: URec Int p -> URec Int p -> Bool Source #

Ord (URec Int p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec Int p -> URec Int p -> Ordering Source #

(<) :: URec Int p -> URec Int p -> Bool Source #

(<=) :: URec Int p -> URec Int p -> Bool Source #

(>) :: URec Int p -> URec Int p -> Bool Source #

(>=) :: URec Int p -> URec Int p -> Bool Source #

max :: URec Int p -> URec Int p -> URec Int p Source #

min :: URec Int p -> URec Int p -> URec Int p Source #

data URec Int (p :: k) Source #

Used for marking occurrences of Int#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Int (p :: k) = UInt {}
type Rep1 (URec Int :: k -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Int :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UInt" 'PrefixI 'True) (S1 ('MetaSel ('Just "uInt#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UInt :: k -> Type)))
type Rep (URec Int p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Int p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UInt" 'PrefixI 'True) (S1 ('MetaSel ('Just "uInt#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UInt :: Type -> Type)))

data TYPE (a :: RuntimeRep) Source #

Instances

Instances details
Generic1 NonEmpty Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 NonEmpty

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Generic1 Identity Source # 
Instance details

Defined in GHC.Internal.Data.Functor.Identity

Associated Types

type Rep1 Identity

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

type Rep1 Identity = D1 ('MetaData "Identity" "GHC.Internal.Data.Functor.Identity" "ghc-internal" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
Generic1 First Source # 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep1 First

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 First = D1 ('MetaData "First" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

Methods

from1 :: First a -> Rep1 First a Source #

to1 :: Rep1 First a -> First a Source #

Generic1 Last Source # 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep1 Last

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 Last = D1 ('MetaData "Last" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

Methods

from1 :: Last a -> Rep1 Last a Source #

to1 :: Rep1 Last a -> Last a Source #

Generic1 Down Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Down

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Down = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Down a -> Rep1 Down a Source #

to1 :: Rep1 Down a -> Down a Source #

Generic1 Dual Source # 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Dual

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Dual a -> Rep1 Dual a Source #

to1 :: Rep1 Dual a -> Dual a Source #

Generic1 Product Source # 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Product

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
Generic1 Sum Source # 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Sum

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Sum a -> Rep1 Sum a Source #

to1 :: Rep1 Sum a -> Sum a Source #

Generic1 ZipList Source # 
Instance details

Defined in GHC.Internal.Functor.ZipList

Associated Types

type Rep1 ZipList

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

type Rep1 ZipList = D1 ('MetaData "ZipList" "GHC.Internal.Functor.ZipList" "ghc-internal" 'True) (C1 ('MetaCons "ZipList" 'PrefixI 'True) (S1 ('MetaSel ('Just "getZipList") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 [])))
Generic1 Par1 Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Par1

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Par1 = D1 ('MetaData "Par1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Par1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unPar1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Par1 a -> Rep1 Par1 a Source #

to1 :: Rep1 Par1 a -> Par1 a Source #

Generic1 Maybe Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Maybe

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Maybe = D1 ('MetaData "Maybe" "GHC.Internal.Maybe" "ghc-internal" 'False) (C1 ('MetaCons "Nothing" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Just" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Maybe a -> Rep1 Maybe a Source #

to1 :: Rep1 Maybe a -> Maybe a Source #

Generic1 Solo Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Solo

@since base-4.15

Instance details

Defined in GHC.Internal.Generics

type Rep1 Solo = D1 ('MetaData "Solo" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "MkSolo" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Solo a -> Rep1 Solo a Source #

to1 :: Rep1 Solo a -> Solo a Source #

Generic1 [] Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 []

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: [a] -> Rep1 [] a Source #

to1 :: Rep1 [] a -> [a] Source #

Monad m => Category (Kleisli m :: Type -> Type -> Type) Source #

@since base-3.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

id :: Kleisli m a a Source #

(.) :: Kleisli m b c -> Kleisli m a b -> Kleisli m a c Source #

Generic1 (Either a :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (Either a :: Type -> Type)

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "GHC.Internal.Data.Either" "ghc-internal" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Either a a0 -> Rep1 (Either a) a0 Source #

to1 :: Rep1 (Either a) a0 -> Either a a0 Source #

Generic1 ((,) a :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,) a :: Type -> Type)

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, a0) -> Rep1 ((,) a) a0 Source #

to1 :: Rep1 ((,) a) a0 -> (a, a0) Source #

Category (->) Source #

@since base-3.0

Instance details

Defined in GHC.Internal.Control.Category

Methods

id :: a -> a Source #

(.) :: (b -> c) -> (a -> b) -> a -> c Source #

Generic1 (Kleisli m a :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Control.Arrow

Associated Types

type Rep1 (Kleisli m a :: Type -> Type)

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep1 (Kleisli m a :: Type -> Type) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) ((FUN 'Many a :: Type -> Type) :.: Rec1 m)))

Methods

from1 :: Kleisli m a a0 -> Rep1 (Kleisli m a) a0 Source #

to1 :: Rep1 (Kleisli m a) a0 -> Kleisli m a a0 Source #

Generic1 ((,,) a b :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,) a b :: Type -> Type)

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, a0) -> Rep1 ((,,) a b) a0 Source #

to1 :: Rep1 ((,,) a b) a0 -> (a, b, a0) Source #

Generic1 ((,,,) a b c :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, a0) -> Rep1 ((,,,) a b c) a0 Source #

to1 :: Rep1 ((,,,) a b c) a0 -> (a, b, c, a0) Source #

Generic1 ((,,,,) a b c d :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, a0) -> Rep1 ((,,,,) a b c d) a0 Source #

to1 :: Rep1 ((,,,,) a b c d) a0 -> (a, b, c, d, a0) Source #

Functor f => Generic1 (f :.: g :: k -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (f :.: g :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :.: g :: k -> Type) = D1 ('MetaData ":.:" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Comp1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unComp1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 g)))

Methods

from1 :: forall (a :: k). (f :.: g) a -> Rep1 (f :.: g) a Source #

to1 :: forall (a :: k). Rep1 (f :.: g) a -> (f :.: g) a Source #

Generic1 ((,,,,,) a b c d e :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, a0) -> Rep1 ((,,,,,) a b c d e) a0 Source #

to1 :: Rep1 ((,,,,,) a b c d e) a0 -> (a, b, c, d, e, a0) Source #

Generic1 ((,,,,,,) a b c d e f :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, a0) -> Rep1 ((,,,,,,) a b c d e f) a0 Source #

to1 :: Rep1 ((,,,,,,) a b c d e f) a0 -> (a, b, c, d, e, f, a0) Source #

Generic1 ((,,,,,,,) a b c d e f g :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, a0) -> Rep1 ((,,,,,,,) a b c d e f g) a0 Source #

to1 :: Rep1 ((,,,,,,,) a b c d e f g) a0 -> (a, b, c, d, e, f, g, a0) Source #

Generic1 ((,,,,,,,,) a b c d e f g h :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, a0) -> Rep1 ((,,,,,,,,) a b c d e f g h) a0 Source #

to1 :: Rep1 ((,,,,,,,,) a b c d e f g h) a0 -> (a, b, c, d, e, f, g, h, a0) Source #

Generic1 ((,,,,,,,,,) a b c d e f g h i :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, a0) -> Rep1 ((,,,,,,,,,) a b c d e f g h i) a0 Source #

to1 :: Rep1 ((,,,,,,,,,) a b c d e f g h i) a0 -> (a, b, c, d, e, f, g, h, i, a0) Source #

Generic1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, a0) -> Rep1 ((,,,,,,,,,,) a b c d e f g h i j) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,) a b c d e f g h i j) a0 -> (a, b, c, d, e, f, g, h, i, j, a0) Source #

Generic1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, a0) -> Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k) a0 -> (a, b, c, d, e, f, g, h, i, j, k, a0) Source #

Generic1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) = D1 ('MetaData "Tuple13" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, a0) -> Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, a0) Source #

Generic1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) = D1 ('MetaData "Tuple14" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, m, a0) -> Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, m, a0) Source #

Generic1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) = D1 ('MetaData "Tuple15" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, a0) -> Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, a0) Source #

Alternative (Proxy :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

empty :: Proxy a Source #

(<|>) :: Proxy a -> Proxy a -> Proxy a Source #

some :: Proxy a -> Proxy [a] Source #

many :: Proxy a -> Proxy [a] Source #

Alternative (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: U1 a Source #

(<|>) :: U1 a -> U1 a -> U1 a Source #

some :: U1 a -> U1 [a] Source #

many :: U1 a -> U1 [a] Source #

Applicative (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

pure :: a -> Proxy a Source #

(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b Source #

liftA2 :: (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c Source #

(*>) :: Proxy a -> Proxy b -> Proxy b Source #

(<*) :: Proxy a -> Proxy b -> Proxy a Source #

Applicative (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> U1 a Source #

(<*>) :: U1 (a -> b) -> U1 a -> U1 b Source #

liftA2 :: (a -> b -> c) -> U1 a -> U1 b -> U1 c Source #

(*>) :: U1 a -> U1 b -> U1 b Source #

(<*) :: U1 a -> U1 b -> U1 a Source #

Functor (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b Source #

(<$) :: a -> Proxy b -> Proxy a Source #

Functor (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b Source #

(<$) :: a -> U1 b -> U1 a Source #

Functor (V1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b Source #

(<$) :: a -> V1 b -> V1 a Source #

Monad (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b Source #

(>>) :: Proxy a -> Proxy b -> Proxy b Source #

return :: a -> Proxy a Source #

Monad (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b Source #

(>>) :: U1 a -> U1 b -> U1 b Source #

return :: a -> U1 a Source #

MonadPlus (Proxy :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

mzero :: Proxy a Source #

mplus :: Proxy a -> Proxy a -> Proxy a Source #

MonadPlus (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: U1 a Source #

mplus :: U1 a -> U1 a -> U1 a Source #

Foldable (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Proxy m -> m Source #

foldMap :: Monoid m => (a -> m) -> Proxy a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Proxy a -> m Source #

foldr :: (a -> b -> b) -> b -> Proxy a -> b Source #

foldr' :: (a -> b -> b) -> b -> Proxy a -> b Source #

foldl :: (b -> a -> b) -> b -> Proxy a -> b Source #

foldl' :: (b -> a -> b) -> b -> Proxy a -> b Source #

foldr1 :: (a -> a -> a) -> Proxy a -> a Source #

foldl1 :: (a -> a -> a) -> Proxy a -> a Source #

toList :: Proxy a -> [a] Source #

null :: Proxy a -> Bool Source #

length :: Proxy a -> Int Source #

elem :: Eq a => a -> Proxy a -> Bool Source #

maximum :: Ord a => Proxy a -> a Source #

minimum :: Ord a => Proxy a -> a Source #

sum :: Num a => Proxy a -> a Source #

product :: Num a => Proxy a -> a Source #

Foldable (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => U1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> U1 a -> m Source #

foldMap' :: Monoid m => (a -> m) -> U1 a -> m Source #

foldr :: (a -> b -> b) -> b -> U1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> U1 a -> b Source #

foldl :: (b -> a -> b) -> b -> U1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> U1 a -> b Source #

foldr1 :: (a -> a -> a) -> U1 a -> a Source #

foldl1 :: (a -> a -> a) -> U1 a -> a Source #

toList :: U1 a -> [a] Source #

null :: U1 a -> Bool Source #

length :: U1 a -> Int Source #

elem :: Eq a => a -> U1 a -> Bool Source #

maximum :: Ord a => U1 a -> a Source #

minimum :: Ord a => U1 a -> a Source #

sum :: Num a => U1 a -> a Source #

product :: Num a => U1 a -> a Source #

Foldable (UAddr :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UAddr m -> m Source #

foldMap :: Monoid m => (a -> m) -> UAddr a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UAddr a -> m Source #

foldr :: (a -> b -> b) -> b -> UAddr a -> b Source #

foldr' :: (a -> b -> b) -> b -> UAddr a -> b Source #

foldl :: (b -> a -> b) -> b -> UAddr a -> b Source #

foldl' :: (b -> a -> b) -> b -> UAddr a -> b Source #

foldr1 :: (a -> a -> a) -> UAddr a -> a Source #

foldl1 :: (a -> a -> a) -> UAddr a -> a Source #

toList :: UAddr a -> [a] Source #

null :: UAddr a -> Bool Source #

length :: UAddr a -> Int Source #

elem :: Eq a => a -> UAddr a -> Bool Source #

maximum :: Ord a => UAddr a -> a Source #

minimum :: Ord a => UAddr a -> a Source #

sum :: Num a => UAddr a -> a Source #

product :: Num a => UAddr a -> a Source #

Foldable (UChar :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UChar m -> m Source #

foldMap :: Monoid m => (a -> m) -> UChar a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UChar a -> m Source #

foldr :: (a -> b -> b) -> b -> UChar a -> b Source #

foldr' :: (a -> b -> b) -> b -> UChar a -> b Source #

foldl :: (b -> a -> b) -> b -> UChar a -> b Source #

foldl' :: (b -> a -> b) -> b -> UChar a -> b Source #

foldr1 :: (a -> a -> a) -> UChar a -> a Source #

foldl1 :: (a -> a -> a) -> UChar a -> a Source #

toList :: UChar a -> [a] Source #

null :: UChar a -> Bool Source #

length :: UChar a -> Int Source #

elem :: Eq a => a -> UChar a -> Bool Source #

maximum :: Ord a => UChar a -> a Source #

minimum :: Ord a => UChar a -> a Source #

sum :: Num a => UChar a -> a Source #

product :: Num a => UChar a -> a Source #

Foldable (UDouble :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UDouble m -> m Source #

foldMap :: Monoid m => (a -> m) -> UDouble a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UDouble a -> m Source #

foldr :: (a -> b -> b) -> b -> UDouble a -> b Source #

foldr' :: (a -> b -> b) -> b -> UDouble a -> b Source #

foldl :: (b -> a -> b) -> b -> UDouble a -> b Source #

foldl' :: (b -> a -> b) -> b -> UDouble a -> b Source #

foldr1 :: (a -> a -> a) -> UDouble a -> a Source #

foldl1 :: (a -> a -> a) -> UDouble a -> a Source #

toList :: UDouble a -> [a] Source #

null :: UDouble a -> Bool Source #

length :: UDouble a -> Int Source #

elem :: Eq a => a -> UDouble a -> Bool Source #

maximum :: Ord a => UDouble a -> a Source #

minimum :: Ord a => UDouble a -> a Source #

sum :: Num a => UDouble a -> a Source #

product :: Num a => UDouble a -> a Source #

Foldable (UFloat :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UFloat m -> m Source #

foldMap :: Monoid m => (a -> m) -> UFloat a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UFloat a -> m Source #

foldr :: (a -> b -> b) -> b -> UFloat a -> b Source #

foldr' :: (a -> b -> b) -> b -> UFloat a -> b Source #

foldl :: (b -> a -> b) -> b -> UFloat a -> b Source #

foldl' :: (b -> a -> b) -> b -> UFloat a -> b Source #

foldr1 :: (a -> a -> a) -> UFloat a -> a Source #

foldl1 :: (a -> a -> a) -> UFloat a -> a Source #

toList :: UFloat a -> [a] Source #

null :: UFloat a -> Bool Source #

length :: UFloat a -> Int Source #

elem :: Eq a => a -> UFloat a -> Bool Source #

maximum :: Ord a => UFloat a -> a Source #

minimum :: Ord a => UFloat a -> a Source #

sum :: Num a => UFloat a -> a Source #

product :: Num a => UFloat a -> a Source #

Foldable (UInt :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UInt m -> m Source #

foldMap :: Monoid m => (a -> m) -> UInt a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UInt a -> m Source #

foldr :: (a -> b -> b) -> b -> UInt a -> b Source #

foldr' :: (a -> b -> b) -> b -> UInt a -> b Source #

foldl :: (b -> a -> b) -> b -> UInt a -> b Source #

foldl' :: (b -> a -> b) -> b -> UInt a -> b Source #

foldr1 :: (a -> a -> a) -> UInt a -> a Source #

foldl1 :: (a -> a -> a) -> UInt a -> a Source #

toList :: UInt a -> [a] Source #

null :: UInt a -> Bool Source #

length :: UInt a -> Int Source #

elem :: Eq a => a -> UInt a -> Bool Source #

maximum :: Ord a => UInt a -> a Source #

minimum :: Ord a => UInt a -> a Source #

sum :: Num a => UInt a -> a Source #

product :: Num a => UInt a -> a Source #

Foldable (UWord :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UWord m -> m Source #

foldMap :: Monoid m => (a -> m) -> UWord a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UWord a -> m Source #

foldr :: (a -> b -> b) -> b -> UWord a -> b Source #

foldr' :: (a -> b -> b) -> b -> UWord a -> b Source #

foldl :: (b -> a -> b) -> b -> UWord a -> b Source #

foldl' :: (b -> a -> b) -> b -> UWord a -> b Source #

foldr1 :: (a -> a -> a) -> UWord a -> a Source #

foldl1 :: (a -> a -> a) -> UWord a -> a Source #

toList :: UWord a -> [a] Source #

null :: UWord a -> Bool Source #

length :: UWord a -> Int Source #

elem :: Eq a => a -> UWord a -> Bool Source #

maximum :: Ord a => UWord a -> a Source #

minimum :: Ord a => UWord a -> a Source #

sum :: Num a => UWord a -> a Source #

product :: Num a => UWord a -> a Source #

Foldable (V1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => V1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> V1 a -> m Source #

foldMap' :: Monoid m => (a -> m) -> V1 a -> m Source #

foldr :: (a -> b -> b) -> b -> V1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> V1 a -> b Source #

foldl :: (b -> a -> b) -> b -> V1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> V1 a -> b Source #

foldr1 :: (a -> a -> a) -> V1 a -> a Source #

foldl1 :: (a -> a -> a) -> V1 a -> a Source #

toList :: V1 a -> [a] Source #

null :: V1 a -> Bool Source #

length :: V1 a -> Int Source #

elem :: Eq a => a -> V1 a -> Bool Source #

maximum :: Ord a => V1 a -> a Source #

minimum :: Ord a => V1 a -> a Source #

sum :: Num a => V1 a -> a Source #

product :: Num a => V1 a -> a Source #

Traversable (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Proxy a -> f (Proxy b) Source #

sequenceA :: Applicative f => Proxy (f a) -> f (Proxy a) Source #

mapM :: Monad m => (a -> m b) -> Proxy a -> m (Proxy b) Source #

sequence :: Monad m => Proxy (m a) -> m (Proxy a) Source #

Traversable (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> U1 a -> f (U1 b) Source #

sequenceA :: Applicative f => U1 (f a) -> f (U1 a) Source #

mapM :: Monad m => (a -> m b) -> U1 a -> m (U1 b) Source #

sequence :: Monad m => U1 (m a) -> m (U1 a) Source #

Traversable (UAddr :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UAddr a -> f (UAddr b) Source #

sequenceA :: Applicative f => UAddr (f a) -> f (UAddr a) Source #

mapM :: Monad m => (a -> m b) -> UAddr a -> m (UAddr b) Source #

sequence :: Monad m => UAddr (m a) -> m (UAddr a) Source #

Traversable (UChar :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UChar a -> f (UChar b) Source #

sequenceA :: Applicative f => UChar (f a) -> f (UChar a) Source #

mapM :: Monad m => (a -> m b) -> UChar a -> m (UChar b) Source #

sequence :: Monad m => UChar (m a) -> m (UChar a) Source #

Traversable (UDouble :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UDouble a -> f (UDouble b) Source #

sequenceA :: Applicative f => UDouble (f a) -> f (UDouble a) Source #

mapM :: Monad m => (a -> m b) -> UDouble a -> m (UDouble b) Source #

sequence :: Monad m => UDouble (m a) -> m (UDouble a) Source #

Traversable (UFloat :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UFloat a -> f (UFloat b) Source #

sequenceA :: Applicative f => UFloat (f a) -> f (UFloat a) Source #

mapM :: Monad m => (a -> m b) -> UFloat a -> m (UFloat b) Source #

sequence :: Monad m => UFloat (m a) -> m (UFloat a) Source #

Traversable (UInt :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UInt a -> f (UInt b) Source #

sequenceA :: Applicative f => UInt (f a) -> f (UInt a) Source #

mapM :: Monad m => (a -> m b) -> UInt a -> m (UInt b) Source #

sequence :: Monad m => UInt (m a) -> m (UInt a) Source #

Traversable (UWord :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UWord a -> f (UWord b) Source #

sequenceA :: Applicative f => UWord (f a) -> f (UWord a) Source #

mapM :: Monad m => (a -> m b) -> UWord a -> m (UWord b) Source #

sequence :: Monad m => UWord (m a) -> m (UWord a) Source #

Traversable (V1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) Source #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) Source #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) Source #

sequence :: Monad m => V1 (m a) -> m (V1 a) Source #

Alternative f => Alternative (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

empty :: Ap f a Source #

(<|>) :: Ap f a -> Ap f a -> Ap f a Source #

some :: Ap f a -> Ap f [a] Source #

many :: Ap f a -> Ap f [a] Source #

Alternative f => Alternative (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

empty :: Alt f a Source #

(<|>) :: Alt f a -> Alt f a -> Alt f a Source #

some :: Alt f a -> Alt f [a] Source #

many :: Alt f a -> Alt f [a] Source #

(Generic1 f, Alternative (Rep1 f)) => Alternative (Generically1 f) Source #

@since base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Alternative f => Alternative (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: Rec1 f a Source #

(<|>) :: Rec1 f a -> Rec1 f a -> Rec1 f a Source #

some :: Rec1 f a -> Rec1 f [a] Source #

many :: Rec1 f a -> Rec1 f [a] Source #

Monoid m => Applicative (Const m :: Type -> Type) Source #

@since base-2.0.1

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

pure :: a -> Const m a Source #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b Source #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c Source #

(*>) :: Const m a -> Const m b -> Const m b Source #

(<*) :: Const m a -> Const m b -> Const m a Source #

Applicative f => Applicative (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

pure :: a -> Ap f a Source #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b Source #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c Source #

(*>) :: Ap f a -> Ap f b -> Ap f b Source #

(<*) :: Ap f a -> Ap f b -> Ap f a Source #

Applicative f => Applicative (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

pure :: a -> Alt f a Source #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b Source #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c Source #

(*>) :: Alt f a -> Alt f b -> Alt f b Source #

(<*) :: Alt f a -> Alt f b -> Alt f a Source #

(Generic1 f, Applicative (Rep1 f)) => Applicative (Generically1 f) Source #

@since base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> Generically1 f a Source #

(<*>) :: Generically1 f (a -> b) -> Generically1 f a -> Generically1 f b Source #

liftA2 :: (a -> b -> c) -> Generically1 f a -> Generically1 f b -> Generically1 f c Source #

(*>) :: Generically1 f a -> Generically1 f b -> Generically1 f b Source #

(<*) :: Generically1 f a -> Generically1 f b -> Generically1 f a Source #

Applicative f => Applicative (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> Rec1 f a Source #

(<*>) :: Rec1 f (a -> b) -> Rec1 f a -> Rec1 f b Source #

liftA2 :: (a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c Source #

(*>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

(<*) :: Rec1 f a -> Rec1 f b -> Rec1 f a Source #

Functor (Const m :: Type -> Type) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b Source #

(<$) :: a -> Const m b -> Const m a Source #

Functor f => Functor (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b Source #

(<$) :: a -> Ap f b -> Ap f a Source #

Functor f => Functor (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b Source #

(<$) :: a -> Alt f b -> Alt f a Source #

(Generic1 f, Functor (Rep1 f)) => Functor (Generically1 f) Source #

@since base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> Generically1 f a -> Generically1 f b Source #

(<$) :: a -> Generically1 f b -> Generically1 f a Source #

Functor f => Functor (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b Source #

(<$) :: a -> Rec1 f b -> Rec1 f a Source #

Functor (URec (Ptr ()) :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b Source #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a Source #

Functor (URec Char :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b Source #

(<$) :: a -> URec Char b -> URec Char a Source #

Functor (URec Double :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b Source #

(<$) :: a -> URec Double b -> URec Double a Source #

Functor (URec Float :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b Source #

(<$) :: a -> URec Float b -> URec Float a Source #

Functor (URec Int :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b Source #

(<$) :: a -> URec Int b -> URec Int a Source #

Functor (URec Word :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b Source #

(<$) :: a -> URec Word b -> URec Word a Source #

Monad f => Monad (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b Source #

(>>) :: Ap f a -> Ap f b -> Ap f b Source #

return :: a -> Ap f a Source #

Monad f => Monad (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b Source #

(>>) :: Alt f a -> Alt f b -> Alt f b Source #

return :: a -> Alt f a Source #

Monad f => Monad (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b Source #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

return :: a -> Rec1 f a Source #

MonadPlus f => MonadPlus (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mzero :: Ap f a Source #

mplus :: Ap f a -> Ap f a -> Ap f a Source #

MonadPlus f => MonadPlus (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mzero :: Alt f a Source #

mplus :: Alt f a -> Alt f a -> Alt f a Source #

MonadPlus f => MonadPlus (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: Rec1 f a Source #

mplus :: Rec1 f a -> Rec1 f a -> Rec1 f a Source #

MonadFail f => MonadFail (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fail :: String -> Ap f a Source #

MonadFix f => MonadFix (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Ap f a) -> Ap f a Source #

MonadFix f => MonadFix (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Alt f a) -> Alt f a Source #

MonadFix f => MonadFix (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Rec1 f a) -> Rec1 f a Source #

Data t => Data (Proxy t) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) Source #

toConstr :: Proxy t -> Constr Source #

dataTypeOf :: Proxy t -> DataType Source #

dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) Source #

dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) Source #

gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

Data p => Data (U1 p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) Source #

toConstr :: U1 p -> Constr Source #

dataTypeOf :: U1 p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) Source #

gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

Data p => Data (V1 p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) Source #

toConstr :: V1 p -> Constr Source #

dataTypeOf :: V1 p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) Source #

gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

Foldable (Const m :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 Source #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source #

foldr :: (a -> b -> b) -> b -> Const m a -> b Source #

foldr' :: (a -> b -> b) -> b -> Const m a -> b Source #

foldl :: (b -> a -> b) -> b -> Const m a -> b Source #

foldl' :: (b -> a -> b) -> b -> Const m a -> b Source #

foldr1 :: (a -> a -> a) -> Const m a -> a Source #

foldl1 :: (a -> a -> a) -> Const m a -> a Source #

toList :: Const m a -> [a] Source #

null :: Const m a -> Bool Source #

length :: Const m a -> Int Source #

elem :: Eq a => a -> Const m a -> Bool Source #

maximum :: Ord a => Const m a -> a Source #

minimum :: Ord a => Const m a -> a Source #

sum :: Num a => Const m a -> a Source #

product :: Num a => Const m a -> a Source #

Foldable f => Foldable (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Ap f a -> m Source #

foldr :: (a -> b -> b) -> b -> Ap f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b Source #

foldl :: (b -> a -> b) -> b -> Ap f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b Source #

foldr1 :: (a -> a -> a) -> Ap f a -> a Source #

foldl1 :: (a -> a -> a) -> Ap f a -> a Source #

toList :: Ap f a -> [a] Source #

null :: Ap f a -> Bool Source #

length :: Ap f a -> Int Source #

elem :: Eq a => a -> Ap f a -> Bool Source #

maximum :: Ord a => Ap f a -> a Source #

minimum :: Ord a => Ap f a -> a Source #

sum :: Num a => Ap f a -> a Source #

product :: Num a => Ap f a -> a Source #

Foldable f => Foldable (Alt f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Alt f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Alt f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Alt f a -> m Source #

foldr :: (a -> b -> b) -> b -> Alt f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Alt f a -> b Source #

foldl :: (b -> a -> b) -> b -> Alt f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Alt f a -> b Source #

foldr1 :: (a -> a -> a) -> Alt f a -> a Source #

foldl1 :: (a -> a -> a) -> Alt f a -> a Source #

toList :: Alt f a -> [a] Source #

null :: Alt f a -> Bool Source #

length :: Alt f a -> Int Source #

elem :: Eq a => a -> Alt f a -> Bool Source #

maximum :: Ord a => Alt f a -> a Source #

minimum :: Ord a => Alt f a -> a Source #

sum :: Num a => Alt f a -> a Source #

product :: Num a => Alt f a -> a Source #

Foldable f => Foldable (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Rec1 f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m Source #

foldr :: (a -> b -> b) -> b -> Rec1 f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b Source #

foldl :: (b -> a -> b) -> b -> Rec1 f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b Source #

foldr1 :: (a -> a -> a) -> Rec1 f a -> a Source #

foldl1 :: (a -> a -> a) -> Rec1 f a -> a Source #

toList :: Rec1 f a -> [a] Source #

null :: Rec1 f a -> Bool Source #

length :: Rec1 f a -> Int Source #

elem :: Eq a => a -> Rec1 f a -> Bool Source #

maximum :: Ord a => Rec1 f a -> a Source #

minimum :: Ord a => Rec1 f a -> a Source #

sum :: Num a => Rec1 f a -> a Source #

product :: Num a => Rec1 f a -> a Source #

Traversable (Const m :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) Source #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) Source #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) Source #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) Source #

Traversable f => Traversable (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) Source #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) Source #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) Source #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) Source #

Traversable f => Traversable (Alt f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) Source #

sequenceA :: Applicative f0 => Alt f (f0 a) -> f0 (Alt f a) Source #

mapM :: Monad m => (a -> m b) -> Alt f a -> m (Alt f b) Source #

sequence :: Monad m => Alt f (m a) -> m (Alt f a) Source #

Traversable f => Traversable (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) Source #

sequenceA :: Applicative f0 => Rec1 f (f0 a) -> f0 (Rec1 f a) Source #

mapM :: Monad m => (a -> m b) -> Rec1 f a -> m (Rec1 f b) Source #

sequence :: Monad m => Rec1 f (m a) -> m (Rec1 f a) Source #

(Alternative f, Alternative g) => Alternative (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: (f :*: g) a Source #

(<|>) :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a Source #

some :: (f :*: g) a -> (f :*: g) [a] Source #

many :: (f :*: g) a -> (f :*: g) [a] Source #

(Applicative f, Applicative g) => Applicative (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> (f :*: g) a Source #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

liftA2 :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c Source #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a Source #

Monoid c => Applicative (K1 i c :: Type -> Type) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> K1 i c a Source #

(<*>) :: K1 i c (a -> b) -> K1 i c a -> K1 i c b Source #

liftA2 :: (a -> b -> c0) -> K1 i c a -> K1 i c b -> K1 i c c0 Source #

(*>) :: K1 i c a -> K1 i c b -> K1 i c b Source #

(<*) :: K1 i c a -> K1 i c b -> K1 i c a Source #

(Functor f, Functor g) => Functor (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

(<$) :: a -> (f :*: g) b -> (f :*: g) a Source #

(Functor f, Functor g) => Functor (f :+: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b Source #

(<$) :: a -> (f :+: g) b -> (f :+: g) a Source #

Functor (K1 i c :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b Source #

(<$) :: a -> K1 i c b -> K1 i c a Source #

(Monad f, Monad g) => Monad (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b Source #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

return :: a -> (f :*: g) a Source #

(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: (f :*: g) a Source #

mplus :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a Source #

(Applicative f, Monoid a) => Monoid (Ap f a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mempty :: Ap f a Source #

mappend :: Ap f a -> Ap f a -> Ap f a Source #

mconcat :: [Ap f a] -> Ap f a Source #

Alternative f => Monoid (Alt f a) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Alt f a Source #

mappend :: Alt f a -> Alt f a -> Alt f a Source #

mconcat :: [Alt f a] -> Alt f a Source #

(Applicative f, Semigroup a) => Semigroup (Ap f a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a Source #

sconcat :: NonEmpty (Ap f a) -> Ap f a Source #

stimes :: Integral b => b -> Ap f a -> Ap f a Source #

Alternative f => Semigroup (Alt f a) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a Source #

sconcat :: NonEmpty (Alt f a) -> Alt f a Source #

stimes :: Integral b => b -> Alt f a -> Alt f a Source #

(MonadFix f, MonadFix g) => MonadFix (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> (f :*: g) a) -> (f :*: g) a Source #

(Data (f a), Data a, Typeable f) => Data (Ap f a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) Source #

toConstr :: Ap f a -> Constr Source #

dataTypeOf :: Ap f a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source #

(Data (f a), Data a, Typeable f) => Data (Alt f a) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) Source #

toConstr :: Alt f a -> Constr Source #

dataTypeOf :: Alt f a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

(Coercible a b, Data a, Data b) => Data (Coercion a b) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) Source #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) Source #

toConstr :: Coercion a b -> Constr Source #

dataTypeOf :: Coercion a b -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) Source #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

(a ~ b, Data a) => Data (a :~: b) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) Source #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) Source #

toConstr :: (a :~: b) -> Constr Source #

dataTypeOf :: (a :~: b) -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) Source #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

(Data (f p), Typeable f, Data p) => Data (Rec1 f p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) Source #

toConstr :: Rec1 f p -> Constr Source #

dataTypeOf :: Rec1 f p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) Source #

gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

(Foldable f, Foldable g) => Foldable (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :*: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a Source #

toList :: (f :*: g) a -> [a] Source #

null :: (f :*: g) a -> Bool Source #

length :: (f :*: g) a -> Int Source #

elem :: Eq a => a -> (f :*: g) a -> Bool Source #

maximum :: Ord a => (f :*: g) a -> a Source #

minimum :: Ord a => (f :*: g) a -> a Source #

sum :: Num a => (f :*: g) a -> a Source #

product :: Num a => (f :*: g) a -> a Source #

(Foldable f, Foldable g) => Foldable (f :+: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :+: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a Source #

toList :: (f :+: g) a -> [a] Source #

null :: (f :+: g) a -> Bool Source #

length :: (f :+: g) a -> Int Source #

elem :: Eq a => a -> (f :+: g) a -> Bool Source #

maximum :: Ord a => (f :+: g) a -> a Source #

minimum :: Ord a => (f :+: g) a -> a Source #

sum :: Num a => (f :+: g) a -> a Source #

product :: Num a => (f :+: g) a -> a Source #

Foldable (K1 i c :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => K1 i c m -> m Source #

foldMap :: Monoid m => (a -> m) -> K1 i c a -> m Source #

foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m Source #

foldr :: (a -> b -> b) -> b -> K1 i c a -> b Source #

foldr' :: (a -> b -> b) -> b -> K1 i c a -> b Source #

foldl :: (b -> a -> b) -> b -> K1 i c a -> b Source #

foldl' :: (b -> a -> b) -> b -> K1 i c a -> b Source #

foldr1 :: (a -> a -> a) -> K1 i c a -> a Source #

foldl1 :: (a -> a -> a) -> K1 i c a -> a Source #

toList :: K1 i c a -> [a] Source #

null :: K1 i c a -> Bool Source #

length :: K1 i c a -> Int Source #

elem :: Eq a => a -> K1 i c a -> Bool Source #

maximum :: Ord a => K1 i c a -> a Source #

minimum :: Ord a => K1 i c a -> a Source #

sum :: Num a => K1 i c a -> a Source #

product :: Num a => K1 i c a -> a Source #

(Traversable f, Traversable g) => Traversable (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) Source #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) Source #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) Source #

(Traversable f, Traversable g) => Traversable (f :+: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) Source #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) Source #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) Source #

Traversable (K1 i c :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> K1 i c a -> f (K1 i c b) Source #

sequenceA :: Applicative f => K1 i c (f a) -> f (K1 i c a) Source #

mapM :: Monad m => (a -> m b) -> K1 i c a -> m (K1 i c b) Source #

sequence :: Monad m => K1 i c (m a) -> m (K1 i c a) Source #

(Applicative f, Bounded a) => Bounded (Ap f a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

minBound :: Ap f a Source #

maxBound :: Ap f a Source #

(Applicative f, Num a) => Num (Ap f a) Source #

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a Source #

(-) :: Ap f a -> Ap f a -> Ap f a Source #

(*) :: Ap f a -> Ap f a -> Ap f a Source #

negate :: Ap f a -> Ap f a Source #

abs :: Ap f a -> Ap f a Source #

signum :: Ap f a -> Ap f a Source #

fromInteger :: Integer -> Ap f a Source #

(Alternative f, Applicative g) => Alternative (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: (f :.: g) a Source #

(<|>) :: (f :.: g) a -> (f :.: g) a -> (f :.: g) a Source #

some :: (f :.: g) a -> (f :.: g) [a] Source #

many :: (f :.: g) a -> (f :.: g) [a] Source #

Alternative f => Alternative (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: M1 i c f a Source #

(<|>) :: M1 i c f a -> M1 i c f a -> M1 i c f a Source #

some :: M1 i c f a -> M1 i c f [a] Source #

many :: M1 i c f a -> M1 i c f [a] Source #

(Applicative f, Applicative g) => Applicative (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> (f :.: g) a Source #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

liftA2 :: (a -> b -> c) -> (f :.: g) a -> (f :.: g) b -> (f :.: g) c Source #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b Source #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a Source #

Applicative f => Applicative (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> M1 i c f a Source #

(<*>) :: M1 i c f (a -> b) -> M1 i c f a -> M1 i c f b Source #

liftA2 :: (a -> b -> c0) -> M1 i c f a -> M1 i c f b -> M1 i c f c0 Source #

(*>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

(<*) :: M1 i c f a -> M1 i c f b -> M1 i c f a Source #

(Functor f, Functor g) => Functor (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

(<$) :: a -> (f :.: g) b -> (f :.: g) a Source #

Functor f => Functor (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b Source #

(<$) :: a -> M1 i c f b -> M1 i c f a Source #

Monad f => Monad (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b Source #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

return :: a -> M1 i c f a Source #

MonadPlus f => MonadPlus (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: M1 i c f a Source #

mplus :: M1 i c f a -> M1 i c f a -> M1 i c f a Source #

MonadFix f => MonadFix (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> M1 i c f a) -> M1 i c f a Source #

(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) Source #

toConstr :: (f :*: g) p -> Constr Source #

dataTypeOf :: (f :*: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) Source #

toConstr :: (f :+: g) p -> Constr Source #

dataTypeOf :: (f :+: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

(Typeable i, Data p, Data c) => Data (K1 i c p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) Source #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) Source #

toConstr :: K1 i c p -> Constr Source #

dataTypeOf :: K1 i c p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) Source #

gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

(Foldable f, Foldable g) => Foldable (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :.: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

toList :: (f :.: g) a -> [a] Source #

null :: (f :.: g) a -> Bool Source #

length :: (f :.: g) a -> Int Source #

elem :: Eq a => a -> (f :.: g) a -> Bool Source #

maximum :: Ord a => (f :.: g) a -> a Source #

minimum :: Ord a => (f :.: g) a -> a Source #

sum :: Num a => (f :.: g) a -> a Source #

product :: Num a => (f :.: g) a -> a Source #

Foldable f => Foldable (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => M1 i c f m -> m Source #

foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m Source #

foldr :: (a -> b -> b) -> b -> M1 i c f a -> b Source #

foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b Source #

foldl :: (b -> a -> b) -> b -> M1 i c f a -> b Source #

foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b Source #

foldr1 :: (a -> a -> a) -> M1 i c f a -> a Source #

foldl1 :: (a -> a -> a) -> M1 i c f a -> a Source #

toList :: M1 i c f a -> [a] Source #

null :: M1 i c f a -> Bool Source #

length :: M1 i c f a -> Int Source #

elem :: Eq a => a -> M1 i c f a -> Bool Source #

maximum :: Ord a => M1 i c f a -> a Source #

minimum :: Ord a => M1 i c f a -> a Source #

sum :: Num a => M1 i c f a -> a Source #

product :: Num a => M1 i c f a -> a Source #

(Traversable f, Traversable g) => Traversable (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) Source #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) Source #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) Source #

Traversable f => Traversable (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) Source #

sequenceA :: Applicative f0 => M1 i c f (f0 a) -> f0 (M1 i c f a) Source #

mapM :: Monad m => (a -> m b) -> M1 i c f a -> m (M1 i c f b) Source #

sequence :: Monad m => M1 i c f (m a) -> m (M1 i c f a) Source #

(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) Source #

toConstr :: (f :.: g) p -> Constr Source #

dataTypeOf :: (f :.: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) Source #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) Source #

toConstr :: M1 i c f p -> Constr Source #

dataTypeOf :: M1 i c f p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) Source #

gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

type Rep1 NonEmpty Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Identity Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

type Rep1 Identity = D1 ('MetaData "Identity" "GHC.Internal.Data.Functor.Identity" "ghc-internal" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 First Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 First = D1 ('MetaData "First" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))
type Rep1 Last Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 Last = D1 ('MetaData "Last" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))
type Rep1 Down Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Down = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Dual Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Product Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Sum Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 ZipList Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

type Rep1 ZipList = D1 ('MetaData "ZipList" "GHC.Internal.Functor.ZipList" "ghc-internal" 'True) (C1 ('MetaCons "ZipList" 'PrefixI 'True) (S1 ('MetaSel ('Just "getZipList") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 [])))
type Rep1 Par1 Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Par1 = D1 ('MetaData "Par1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Par1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unPar1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Maybe Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Maybe = D1 ('MetaData "Maybe" "GHC.Internal.Maybe" "ghc-internal" 'False) (C1 ('MetaCons "Nothing" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Just" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Solo Source #

@since base-4.15

Instance details

Defined in GHC.Internal.Generics

type Rep1 Solo = D1 ('MetaData "Solo" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "MkSolo" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 [] Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Either a :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "GHC.Internal.Data.Either" "ghc-internal" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 ((,) a :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Kleisli m a :: Type -> Type) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep1 (Kleisli m a :: Type -> Type) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) ((FUN 'Many a :: Type -> Type) :.: Rec1 m)))
type Rep1 ((,,) a b :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,) a b c :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,) a b c d :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :.: g :: k -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :.: g :: k -> Type) = D1 ('MetaData ":.:" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Comp1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unComp1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 g)))
type Rep1 ((,,,,,) a b c d e :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,) a b c d e f :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,) a b c d e f g :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,) a b c d e f g h :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,) a b c d e f g h i :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) = D1 ('MetaData "Tuple13" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))
type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) = D1 ('MetaData "Tuple14" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))
type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) = D1 ('MetaData "Tuple15" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

data WordBox (a :: TYPE 'WordRep) Source #

Constructors

MkWordBox a 

data IntBox (a :: TYPE 'IntRep) Source #

Constructors

MkIntBox a 

data FloatBox (a :: TYPE 'FloatRep) Source #

Constructors

MkFloatBox a 

data DoubleBox (a :: TYPE 'DoubleRep) Source #

Constructors

MkDoubleBox a 

data DictBox a Source #

Data type Dict provides a simple way to wrap up a (lifted) constraint as a type

Constructors

a => MkDictBox 

data Bool Source #

Constructors

False 
True 

Instances

Instances details
Bits Bool Source #

Interpret Bool as 1-bit bit-field

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Bits

FiniteBits Bool Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Bits

Data Bool Source #

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool Source #

toConstr :: Bool -> Constr Source #

dataTypeOf :: Bool -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) Source #

gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source #

Bounded Bool Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Enum Bool Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Storable Bool Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Foreign.Storable

Generic Bool Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep Bool

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Bool = D1 ('MetaData "Bool" "GHC.Types" "ghc-prim" 'False) (C1 ('MetaCons "False" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "True" 'PrefixI 'False) (U1 :: Type -> Type))

Methods

from :: Bool -> Rep Bool x Source #

to :: Rep Bool x -> Bool Source #

Ix Bool Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Ix

Read Bool Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Show Bool Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Show

Eq Bool 
Instance details

Defined in GHC.Classes

Methods

(==) :: Bool -> Bool -> Bool Source #

(/=) :: Bool -> Bool -> Bool Source #

Ord Bool 
Instance details

Defined in GHC.Classes

type Rep Bool Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Bool = D1 ('MetaData "Bool" "GHC.Types" "ghc-prim" 'False) (C1 ('MetaCons "False" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "True" 'PrefixI 'False) (U1 :: Type -> Type))

data Char Source #

The character type Char represents Unicode codespace and its elements are code points as in definitions D9 and D10 of the Unicode Standard.

Character literals in Haskell are single-quoted: 'Q', 'Я' or 'Ω'. To represent a single quote itself use '\'', and to represent a backslash use '\\'. The full grammar can be found in the section 2.6 of the Haskell 2010 Language Report.

To specify a character by its code point one can use decimal, hexadecimal or octal notation: '\65', '\x41' and '\o101' are all alternative forms of 'A'. The largest code point is '\x10ffff'.

There is a special escape syntax for ASCII control characters:

EscapeAlternativesMeaning
'\NUL''\0'null character
'\SOH''\1'start of heading
'\STX''\2'start of text
'\ETX''\3'end of text
'\EOT''\4'end of transmission
'\ENQ''\5'enquiry
'\ACK''\6'acknowledge
'\BEL''\7', '\a'bell (alert)
'\BS''\8', '\b'backspace
'\HT''\9', '\t'horizontal tab
'\LF''\10', '\n'line feed (new line)
'\VT''\11', '\v'vertical tab
'\FF''\12', '\f'form feed
'\CR''\13', '\r'carriage return
'\SO''\14'shift out
'\SI''\15'shift in
'\DLE''\16'data link escape
'\DC1''\17'device control 1
'\DC2''\18'device control 2
'\DC3''\19'device control 3
'\DC4''\20'device control 4
'\NAK''\21'negative acknowledge
'\SYN''\22'synchronous idle
'\ETB''\23'end of transmission block
'\CAN''\24'cancel
'\EM''\25'end of medium
'\SUB''\26'substitute
'\ESC''\27'escape
'\FS''\28'file separator
'\GS''\29'group separator
'\RS''\30'record separator
'\US''\31'unit separator
'\SP''\32', ' 'space
'\DEL''\127'delete

Data.Char provides utilities to work with Char.

Constructors

C# Char# 

Instances

Instances details
Data Char Source #

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char Source #

toConstr :: Char -> Constr Source #

dataTypeOf :: Char -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) Source #

gmapT :: (forall b. Data b => b -> b) -> Char -> Char Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

Bounded Char Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Enum Char Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Storable Char Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Foreign.Storable

Ix Char Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Ix

Read Char Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Show Char Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Show

Eq Char 
Instance details

Defined in GHC.Classes

Methods

(==) :: Char -> Char -> Bool Source #

(/=) :: Char -> Char -> Bool Source #

Ord Char 
Instance details

Defined in GHC.Classes

TestCoercion SChar Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.TypeLits

Methods

testCoercion :: forall (a :: Char) (b :: Char). SChar a -> SChar b -> Maybe (Coercion a b) Source #

TestEquality SChar Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.TypeLits

Methods

testEquality :: forall (a :: Char) (b :: Char). SChar a -> SChar b -> Maybe (a :~: b) Source #

Generic1 (URec Char :: k -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Char :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Char :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "uChar#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UChar :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Char a -> Rep1 (URec Char :: k -> Type) a Source #

to1 :: forall (a :: k). Rep1 (URec Char :: k -> Type) a -> URec Char a Source #

Foldable (UChar :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UChar m -> m Source #

foldMap :: Monoid m => (a -> m) -> UChar a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UChar a -> m Source #

foldr :: (a -> b -> b) -> b -> UChar a -> b Source #

foldr' :: (a -> b -> b) -> b -> UChar a -> b Source #

foldl :: (b -> a -> b) -> b -> UChar a -> b Source #

foldl' :: (b -> a -> b) -> b -> UChar a -> b Source #

foldr1 :: (a -> a -> a) -> UChar a -> a Source #

foldl1 :: (a -> a -> a) -> UChar a -> a Source #

toList :: UChar a -> [a] Source #

null :: UChar a -> Bool Source #

length :: UChar a -> Int Source #

elem :: Eq a => a -> UChar a -> Bool Source #

maximum :: Ord a => UChar a -> a Source #

minimum :: Ord a => UChar a -> a Source #

sum :: Num a => UChar a -> a Source #

product :: Num a => UChar a -> a Source #

Traversable (UChar :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UChar a -> f (UChar b) Source #

sequenceA :: Applicative f => UChar (f a) -> f (UChar a) Source #

mapM :: Monad m => (a -> m b) -> UChar a -> m (UChar b) Source #

sequence :: Monad m => UChar (m a) -> m (UChar a) Source #

Functor (URec Char :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b Source #

(<$) :: a -> URec Char b -> URec Char a Source #

Generic (URec Char p) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Char p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Char p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "uChar#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UChar :: Type -> Type)))

Methods

from :: URec Char p -> Rep (URec Char p) x Source #

to :: Rep (URec Char p) x -> URec Char p Source #

Show (URec Char p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Eq (URec Char p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Char p -> URec Char p -> Bool Source #

(/=) :: URec Char p -> URec Char p -> Bool Source #

Ord (URec Char p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec Char p -> URec Char p -> Ordering Source #

(<) :: URec Char p -> URec Char p -> Bool Source #

(<=) :: URec Char p -> URec Char p -> Bool Source #

(>) :: URec Char p -> URec Char p -> Bool Source #

(>=) :: URec Char p -> URec Char p -> Bool Source #

max :: URec Char p -> URec Char p -> URec Char p Source #

min :: URec Char p -> URec Char p -> URec Char p Source #

data URec Char (p :: k) Source #

Used for marking occurrences of Char#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Char (p :: k) = UChar {}
type Compare (a :: Char) (b :: Char) Source # 
Instance details

Defined in GHC.Internal.Data.Type.Ord

type Compare (a :: Char) (b :: Char) = CmpChar a b
type Rep1 (URec Char :: k -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Char :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "uChar#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UChar :: k -> Type)))
type Rep (URec Char p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Char p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "uChar#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UChar :: Type -> Type)))

data Double Source #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Constructors

D# Double# 

Instances

Instances details
Data Double Source #

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double Source #

toConstr :: Double -> Constr Source #

dataTypeOf :: Double -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) Source #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

Enum Double Source #

@since base-2.01

fromEnum just truncates its argument, beware of all sorts of overflows.

List generators have extremely peculiar behavior, mandated by Haskell Report 2010:

>>> [0..1.5]
[0.0,1.0,2.0]
Instance details

Defined in GHC.Internal.Float

Floating Double Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Float

RealFloat Double Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Float

Storable Double Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Foreign.Storable

Num Double Source #

@since base-2.01

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero. Neither addition nor multiplication are associative or distributive:

>>> (0.1 + 0.1) + 0.4 == 0.1 + (0.1 + 0.4)
False
>>> (0.1 + 0.2) * 0.3 == 0.1 * 0.3 + 0.2 * 0.3
False
>>> (0.1 * 0.1) * 0.3 == 0.1 * (0.1 * 0.3)
False
Instance details

Defined in GHC.Internal.Float

Read Double Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Fractional Double Source #

@since base-2.01

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero.

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
>>> map (/ 0) [-1, 0, 1]
[-Infinity,NaN,Infinity]
>>> map (* 0) $ map (/ 0) [-1, 0, 1]
[NaN,NaN,NaN]
Instance details

Defined in GHC.Internal.Float

Real Double Source #

@since base-2.01

Beware that toRational generates garbage for non-finite arguments:

>>> toRational (1/0)
179769313 (and 300 more digits...) % 1
>>> toRational (0/0)
269653970 (and 300 more digits...) % 1
Instance details

Defined in GHC.Internal.Float

RealFrac Double Source #

@since base-2.01

Beware that results for non-finite arguments are garbage:

>>> [ f x | f <- [round, floor, ceiling], x <- [-1/0, 0/0, 1/0] ] :: [Int]
[0,0,0,0,0,0,0,0,0]
>>> map properFraction [-1/0, 0/0, 1/0] :: [(Int, Double)]
[(0,0.0),(0,0.0),(0,0.0)]

and get even more non-sensical if you ask for Integer instead of Int.

Instance details

Defined in GHC.Internal.Float

Show Double Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Float

Eq Double

Note that due to the presence of NaN, Double's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Double)
False

Also note that Double's Eq instance does not satisfy substitutivity:

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
Instance details

Defined in GHC.Classes

Ord Double

IEEE 754 Double-precision type includes not only numbers, but also positive and negative infinities and a special element called NaN (which can be quiet or signal).

IEEE 754-2008, section 5.11 requires that if at least one of arguments of <=, <, >, >= is NaN then the result of the comparison is False, and instance Ord Double complies with this requirement. This violates the reflexivity: both NaN <= NaN and NaN >= NaN are False.

IEEE 754-2008, section 5.10 defines totalOrder predicate. Unfortunately, compare on Doubles violates the IEEE standard and does not define a total order. More specifically, both compare NaN x and compare x NaN always return GT.

Thus, users must be extremely cautious when using instance Ord Double. For instance, one should avoid ordered containers with keys represented by Double, because data loss and corruption may happen. An IEEE-compliant compare is available in fp-ieee package as TotallyOrdered newtype.

Moving further, the behaviour of min and max with regards to NaN is also non-compliant. IEEE 754-2008, section 5.3.1 defines that quiet NaN should be treated as a missing data by minNum and maxNum functions, for example, minNum(NaN, 1) = minNum(1, NaN) = 1. Some languages such as Java deviate from the standard implementing minNum(NaN, 1) = minNum(1, NaN) = NaN. However, min / max in base are even worse: min NaN 1 is 1, but min 1 NaN is NaN.

IEEE 754-2008 compliant min / max can be found in ieee754 package under minNum / maxNum names. Implementations compliant with minimumNumber / maximumNumber from a newer IEEE 754-2019, section 9.6 are available from fp-ieee package.

Instance details

Defined in GHC.Classes

Generic1 (URec Double :: k -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Double :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Double :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Double a -> Rep1 (URec Double :: k -> Type) a Source #

to1 :: forall (a :: k). Rep1 (URec Double :: k -> Type) a -> URec Double a Source #

Foldable (UDouble :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UDouble m -> m Source #

foldMap :: Monoid m => (a -> m) -> UDouble a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UDouble a -> m Source #

foldr :: (a -> b -> b) -> b -> UDouble a -> b Source #

foldr' :: (a -> b -> b) -> b -> UDouble a -> b Source #

foldl :: (b -> a -> b) -> b -> UDouble a -> b Source #

foldl' :: (b -> a -> b) -> b -> UDouble a -> b Source #

foldr1 :: (a -> a -> a) -> UDouble a -> a Source #

foldl1 :: (a -> a -> a) -> UDouble a -> a Source #

toList :: UDouble a -> [a] Source #

null :: UDouble a -> Bool Source #

length :: UDouble a -> Int Source #

elem :: Eq a => a -> UDouble a -> Bool Source #

maximum :: Ord a => UDouble a -> a Source #

minimum :: Ord a => UDouble a -> a Source #

sum :: Num a => UDouble a -> a Source #

product :: Num a => UDouble a -> a Source #

Traversable (UDouble :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UDouble a -> f (UDouble b) Source #

sequenceA :: Applicative f => UDouble (f a) -> f (UDouble a) Source #

mapM :: Monad m => (a -> m b) -> UDouble a -> m (UDouble b) Source #

sequence :: Monad m => UDouble (m a) -> m (UDouble a) Source #

Functor (URec Double :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b Source #

(<$) :: a -> URec Double b -> URec Double a Source #

Generic (URec Double p) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Double p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Double p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: Type -> Type)))

Methods

from :: URec Double p -> Rep (URec Double p) x Source #

to :: Rep (URec Double p) x -> URec Double p Source #

Show (URec Double p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Eq (URec Double p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Double p -> URec Double p -> Bool Source #

(/=) :: URec Double p -> URec Double p -> Bool Source #

Ord (URec Double p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Double (p :: k) Source #

Used for marking occurrences of Double#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Double (p :: k) = UDouble {}
type Rep1 (URec Double :: k -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Double :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: k -> Type)))
type Rep (URec Double p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Double p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: Type -> Type)))

data List a Source #

The builtin linked list type.

In Haskell, lists are one of the most important data types as they are often used analogous to loops in imperative programming languages. These lists are singly linked, which makes them unsuited for operations that require \(\mathcal{O}(1)\) access. Instead, they are intended to be traversed.

You can use List a or [a] in type signatures:

length :: [a] -> Int

or

length :: List a -> Int

They are fully equivalent, and List a will be normalised to [a].

Usage

Lists are constructed recursively using the right-associative constructor operator (or cons) (:) :: a -> [a] -> [a], which prepends an element to a list, and the empty list [].

(1 : 2 : 3 : []) == (1 : (2 : (3 : []))) == [1, 2, 3]

Lists can also be constructed using list literals of the form [x_1, x_2, ..., x_n] which are syntactic sugar and, unless -XOverloadedLists is enabled, are translated into uses of (:) and []

String literals, like "I 💜 hs", are translated into Lists of characters, ['I', ' ', '💜', ' ', 'h', 's'].

Implementation

Expand

Internally and in memory, all the above are represented like this, with arrows being pointers to locations in memory.

╭───┬───┬──╮   ╭───┬───┬──╮   ╭───┬───┬──╮   ╭────╮
│(:)│   │ ─┼──>│(:)│   │ ─┼──>│(:)│   │ ─┼──>│ [] │
╰───┴─┼─┴──╯   ╰───┴─┼─┴──╯   ╰───┴─┼─┴──╯   ╰────╯
      v              v              v
      1              2              3

Examples

Expand
>>> ['H', 'a', 's', 'k', 'e', 'l', 'l']
"Haskell"
>>> 1 : [4, 1, 5, 9]
[1,4,1,5,9]
>>> [] : [] : []
[[],[]]

Since: ghc-prim-0.10.0

Instances

Instances details
Alternative [] Source #

Combines lists by concatenation, starting from the empty list.

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

empty :: [a] Source #

(<|>) :: [a] -> [a] -> [a] Source #

some :: [a] -> [[a]] Source #

many :: [a] -> [[a]] Source #

Applicative [] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

pure :: a -> [a] Source #

(<*>) :: [a -> b] -> [a] -> [b] Source #

liftA2 :: (a -> b -> c) -> [a] -> [b] -> [c] Source #

(*>) :: [a] -> [b] -> [b] Source #

(<*) :: [a] -> [b] -> [a] Source #

Functor [] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> [a] -> [b] Source #

(<$) :: a -> [b] -> [a] Source #

Monad [] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] Source #

(>>) :: [a] -> [b] -> [b] Source #

return :: a -> [a] Source #

MonadPlus [] Source #

Combines lists by concatenation, starting from the empty list.

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

mzero :: [a] Source #

mplus :: [a] -> [a] -> [a] Source #

MonadFail [] Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fail

Methods

fail :: String -> [a] Source #

MonadFix [] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> [a]) -> [a] Source #

Foldable [] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => [m] -> m Source #

foldMap :: Monoid m => (a -> m) -> [a] -> m Source #

foldMap' :: Monoid m => (a -> m) -> [a] -> m Source #

foldr :: (a -> b -> b) -> b -> [a] -> b Source #

foldr' :: (a -> b -> b) -> b -> [a] -> b Source #

foldl :: (b -> a -> b) -> b -> [a] -> b Source #

foldl' :: (b -> a -> b) -> b -> [a] -> b Source #

foldr1 :: (a -> a -> a) -> [a] -> a Source #

foldl1 :: (a -> a -> a) -> [a] -> a Source #

toList :: [a] -> [a] Source #

null :: [a] -> Bool Source #

length :: [a] -> Int Source #

elem :: Eq a => a -> [a] -> Bool Source #

maximum :: Ord a => [a] -> a Source #

minimum :: Ord a => [a] -> a Source #

sum :: Num a => [a] -> a Source #

product :: Num a => [a] -> a Source #

Traversable [] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> [a] -> f [b] Source #

sequenceA :: Applicative f => [f a] -> f [a] Source #

mapM :: Monad m => (a -> m b) -> [a] -> m [b] Source #

sequence :: Monad m => [m a] -> m [a] Source #

Generic1 [] Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 []

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: [a] -> Rep1 [] a Source #

to1 :: Rep1 [] a -> [a] Source #

Monoid [a] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: [a] Source #

mappend :: [a] -> [a] -> [a] Source #

mconcat :: [[a]] -> [a] Source #

Semigroup [a] Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: [a] -> [a] -> [a] Source #

sconcat :: NonEmpty [a] -> [a] Source #

stimes :: Integral b => b -> [a] -> [a] Source #

Data a => Data [a] Source #

For historical reasons, the constructor name used for (:) is "(:)". In a derived instance, it would be ":".

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] Source #

toConstr :: [a] -> Constr Source #

dataTypeOf :: [a] -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) Source #

gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] Source #

a ~ Char => IsString [a] Source #

(a ~ Char) context was introduced in 4.9.0.0

@since base-2.01

Instance details

Defined in GHC.Internal.Data.String

Methods

fromString :: String -> [a] Source #

Generic [a] Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep [a]

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: [a] -> Rep [a] x Source #

to :: Rep [a] x -> [a] Source #

IsList [a] Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item [a] 
Instance details

Defined in GHC.Internal.IsList

type Item [a] = a

Methods

fromList :: [Item [a]] -> [a] Source #

fromListN :: Int -> [Item [a]] -> [a] Source #

toList :: [a] -> [Item [a]] Source #

Read a => Read [a] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Show a => Show [a] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> [a] -> ShowS Source #

show :: [a] -> String Source #

showList :: [[a]] -> ShowS Source #

Eq a => Eq [a] 
Instance details

Defined in GHC.Classes

Methods

(==) :: [a] -> [a] -> Bool Source #

(/=) :: [a] -> [a] -> Bool Source #

Ord a => Ord [a] 
Instance details

Defined in GHC.Classes

Methods

compare :: [a] -> [a] -> Ordering Source #

(<) :: [a] -> [a] -> Bool Source #

(<=) :: [a] -> [a] -> Bool Source #

(>) :: [a] -> [a] -> Bool Source #

(>=) :: [a] -> [a] -> Bool Source #

max :: [a] -> [a] -> [a] Source #

min :: [a] -> [a] -> [a] Source #

type Rep1 [] Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep [a] Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Item [a] Source # 
Instance details

Defined in GHC.Internal.IsList

type Item [a] = a

data Ordering Source #

Constructors

LT 
EQ 
GT 

Instances

Instances details
Monoid Ordering Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Semigroup Ordering Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Data Ordering Source #

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering Source #

toConstr :: Ordering -> Constr Source #

dataTypeOf :: Ordering -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) Source #

gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source #

Bounded Ordering Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Enum Ordering Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Generic Ordering Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep Ordering

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Ordering = D1 ('MetaData "Ordering" "GHC.Types" "ghc-prim" 'False) (C1 ('MetaCons "LT" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "EQ" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "GT" 'PrefixI 'False) (U1 :: Type -> Type)))
Ix Ordering Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Ix

Read Ordering Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Show Ordering Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Show

Eq Ordering 
Instance details

Defined in GHC.Classes

Ord Ordering 
Instance details

Defined in GHC.Classes

type Rep Ordering Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Ordering = D1 ('MetaData "Ordering" "GHC.Types" "ghc-prim" 'False) (C1 ('MetaCons "LT" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "EQ" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "GT" 'PrefixI 'False) (U1 :: Type -> Type)))

class a ~# b => (a :: k0) ~~ (b :: k1) infix 4 Source #

Lifted, heterogeneous equality. By lifted, we mean that it can be bogus (deferred type error). By heterogeneous, the two types a and b might have different kinds. Because ~~ can appear unexpectedly in error messages to users who do not care about the difference between heterogeneous equality ~~ and homogeneous equality ~, this is printed as ~ unless -fprint-equality-relations is set.

In 0.7.0, the fixity was set to infix 4 to match the fixity of :~~:.

class a ~# b => (a :: k) ~ (b :: k) infix 4 Source #

Lifted, homogeneous equality. By lifted, we mean that it can be bogus (deferred type error). By homogeneous, the two types a and b must have the same kinds.

class a ~R# b => Coercible (a :: k) (b :: k) Source #

Coercible is a two-parameter class that has instances for types a and b if the compiler can infer that they have the same representation. This class does not have regular instances; instead they are created on-the-fly during type-checking. Trying to manually declare an instance of Coercible is an error.

Nevertheless one can pretend that the following three kinds of instances exist. First, as a trivial base-case:

instance Coercible a a

Furthermore, for every type constructor there is an instance that allows to coerce under the type constructor. For example, let D be a prototypical type constructor (data or newtype) with three type arguments, which have roles nominal, representational resp. phantom. Then there is an instance of the form

instance Coercible b b' => Coercible (D a b c) (D a b' c')

Note that the nominal type arguments are equal, the representational type arguments can differ, but need to have a Coercible instance themself, and the phantom type arguments can be changed arbitrarily.

The third kind of instance exists for every newtype NT = MkNT T and comes in two variants, namely

instance Coercible a T => Coercible a NT
instance Coercible T b => Coercible NT b

This instance is only usable if the constructor MkNT is in scope.

If, as a library author of a type constructor like Set a, you want to prevent a user of your module to write coerce :: Set T -> Set NT, you need to set the role of Set's type parameter to nominal, by writing

type role Set nominal

For more details about this feature, please refer to Safe Coercions by Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones and Stephanie Weirich.

Since: ghc-prim-0.4.0

data Symbol Source #

(Kind) This is the kind of type-level symbols.

Instances

Instances details
TestCoercion SSymbol Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.TypeLits

Methods

testCoercion :: forall (a :: Symbol) (b :: Symbol). SSymbol a -> SSymbol b -> Maybe (Coercion a b) Source #

TestEquality SSymbol Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.TypeLits

Methods

testEquality :: forall (a :: Symbol) (b :: Symbol). SSymbol a -> SSymbol b -> Maybe (a :~: b) Source #

type Compare (a :: Symbol) (b :: Symbol) Source # 
Instance details

Defined in GHC.Internal.Data.Type.Ord

type Compare (a :: Symbol) (b :: Symbol) = CmpSymbol a b

data RuntimeRep Source #

GHC maintains a property that the kind of all inhabited types (as distinct from type constructors or type-level data) tells us the runtime representation of values of that type. This datatype encodes the choice of runtime value. Note that TYPE is parameterised by RuntimeRep; this is precisely what we mean by the fact that a type's kind encodes the runtime representation.

For boxed values (that is, values that are represented by a pointer), a further distinction is made, between lifted types (that contain ⊥), and unlifted ones (that don't).

Constructors

VecRep VecCount VecElem

a SIMD vector type

TupleRep [RuntimeRep]

An unboxed tuple of the given reps

SumRep [RuntimeRep]

An unboxed sum of the given reps

BoxedRep Levity

boxed; represented by a pointer

IntRep

signed, word-sized value

Int8Rep

signed, 8-bit value

Int16Rep

signed, 16-bit value

Int32Rep

signed, 32-bit value

Int64Rep

signed, 64-bit value

WordRep

unsigned, word-sized value

Word8Rep

unsigned, 8-bit value

Word16Rep

unsigned, 16-bit value

Word32Rep

unsigned, 32-bit value

Word64Rep

unsigned, 64-bit value

AddrRep

A pointer, but not to a Haskell value

FloatRep

a 32-bit floating point number

DoubleRep

a 64-bit floating point number

Instances

Instances details
Show RuntimeRep Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

data Levity Source #

Whether a boxed type is lifted or unlifted.

Constructors

Lifted 
Unlifted 

Instances

Instances details
Bounded Levity Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Enum

Enum Levity Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Enum

Show Levity Source #

@since base-4.15.0.0

Instance details

Defined in GHC.Internal.Show

data VecCount Source #

Length of a SIMD vector type

Constructors

Vec2 
Vec4 
Vec8 
Vec16 
Vec32 
Vec64 

Instances

Instances details
Bounded VecCount Source #

@since base-4.10.0.0

Instance details

Defined in GHC.Internal.Enum

Enum VecCount Source #

@since base-4.10.0.0

Instance details

Defined in GHC.Internal.Enum

Show VecCount Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

data VecElem Source #

Element of a SIMD vector type

Instances

Instances details
Bounded VecElem Source #

@since base-4.10.0.0

Instance details

Defined in GHC.Internal.Enum

Enum VecElem Source #

@since base-4.10.0.0

Instance details

Defined in GHC.Internal.Enum

Show VecElem Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

data Multiplicity Source #

Constructors

One 
Many 

data SPEC Source #

SPEC is used by GHC in the SpecConstr pass in order to inform the compiler when to be particularly aggressive. In particular, it tells GHC to specialize regardless of size or the number of specializations. However, not all loops fall into this category.

Libraries can specify this by using SPEC data type to inform which loops should be aggressively specialized. For example, instead of

loop x where loop arg = ...

write

loop SPEC x where loop !_ arg = ...

There is no semantic difference between SPEC and SPEC2, we just need a type with two constructors lest it is optimised away before SpecConstr.

This type is reexported from GHC.Exts since GHC 9.0 and base-4.15. For compatibility with earlier releases import it from GHC.Types in ghc-prim package.

Since: ghc-prim-0.3.1.0

Constructors

SPEC 
SPEC2 

pattern TrNameD :: [Char] -> TrName Source #

Dynamic

pattern TrNameS :: Addr# -> TrName Source #

Static

type ZeroBitType = TYPE ZeroBitRep Source #

The kind of the empty unboxed tuple type (# #)

type ZeroBitRep = 'TupleRep ('[] :: [RuntimeRep]) Source #

The runtime representation of a zero-width tuple, represented by no bits at all

type UnliftedRep = 'BoxedRep 'Unlifted Source #

The runtime representation of unlifted types.

type LiftedRep = 'BoxedRep 'Lifted Source #

The runtime representation of lifted types.

type UnliftedType = TYPE UnliftedRep Source #

The kind of boxed, unlifted values, for example Array# or a user-defined unlifted data type, using -XUnliftedDataTypes.

type Constraint = CONSTRAINT LiftedRep Source #

The kind of lifted constraints

type family Any :: k where ... Source #

The type constructor Any is type to which you can unsafely coerce any lifted type, and back. More concretely, for a lifted type t and value x :: t, unsafeCoerce (unsafeCoerce x :: Any) :: t is equivalent to x.

type Void# = (# #) Source #

type family MultMul (a :: Multiplicity) (b :: Multiplicity) :: Multiplicity where ... Source #

Equations

MultMul 'One x = x 
MultMul x 'One = x 
MultMul 'Many x = 'Many 
MultMul x 'Many = 'Many 

isTrue# :: Int# -> Bool Source #

Alias for tagToEnum#. Returns True if its parameter is 1# and False if it is 0#.

Legacy interface for arrays of arrays

Primitive operations

data Addr# :: TYPE 'AddrRep Source #

An arbitrary machine address assumed to point outside the garbage-collected heap.

data Array# (a :: TYPE ('BoxedRep l)) :: UnliftedType Source #

data ByteArray# :: UnliftedType Source #

A boxed, unlifted datatype representing a region of raw memory in the garbage-collected heap, which is not scanned for pointers during garbage collection.

It is created by freezing a MutableByteArray# with unsafeFreezeByteArray#. Freezing is essentially a no-op, as MutableByteArray# and ByteArray# share the same heap structure under the hood.

The immutable and mutable variants are commonly used for scenarios requiring high-performance data structures, like Text, Primitive Vector, Unboxed Array, and ShortByteString.

Another application of fundamental importance is Integer, which is backed by ByteArray#.

The representation on the heap of a Byte Array is:

+------------+-----------------+-----------------------+
|            |                 |                       |
|   HEADER   | SIZE (in bytes) |       PAYLOAD         |
|            |                 |                       |
+------------+-----------------+-----------------------+

To obtain a pointer to actual payload (e.g., for FFI purposes) use byteArrayContents# or mutableByteArrayContents#.

Alternatively, enabling the UnliftedFFITypes extension allows to mention ByteArray# and MutableByteArray# in FFI type signatures directly.

data BCO Source #

Primitive bytecode type.

data Weak# (a :: TYPE ('BoxedRep l)) :: UnliftedType Source #

data MutableByteArray# a :: UnliftedType Source #

A mutable ByteAray#. It can be created in three ways:

Unpinned arrays can be moved around during garbage collection, so you must not store or pass pointers to these values if there is a chance for the garbage collector to kick in. That said, even unpinned arrays can be passed to unsafe FFI calls, because no garbage collection happens during these unsafe calls (see Guaranteed Call Safety in the GHC Manual). For safe FFI calls, byte arrays must be not only pinned, but also kept alive by means of the keepAlive# function for the duration of a call (that's because garbage collection cannot move a pinned array, but is free to scrap it altogether).

data MVar# a (b :: TYPE ('BoxedRep l)) :: UnliftedType Source #

A shared mutable variable (not the same as a MutVar#!). (Note: in a non-concurrent implementation, (MVar# a) can be represented by (MutVar# (Maybe a)).)

data IOPort# a (b :: TYPE ('BoxedRep l)) :: UnliftedType Source #

A shared I/O port is almost the same as an MVar#. The main difference is that IOPort has no deadlock detection or deadlock breaking code that forcibly releases the lock.

data TVar# a (b :: TYPE ('BoxedRep l)) :: UnliftedType Source #

data MutVar# a (b :: TYPE ('BoxedRep l)) :: UnliftedType Source #

A MutVar# behaves like a single-element mutable array.

data RealWorld Source #

RealWorld is deeply magical. It is primitive, but it is not unlifted (hence ptrArg). We never manipulate values of type RealWorld; it's only used in the type system, to parameterise State#.

data StablePtr# (a :: TYPE ('BoxedRep l)) :: TYPE 'AddrRep Source #

data State# a :: ZeroBitType Source #

State# is the primitive, unlifted type of states. It has one type parameter, thus State# RealWorld, or State# s, where s is a type variable. The only purpose of the type parameter is to keep different state threads separate. It is represented by nothing at all.

data Proxy# (a :: k) :: ZeroBitType Source #

The type constructor Proxy# is used to bear witness to some type variable. It's used when you want to pass around proxy values for doing things like modelling type applications. A Proxy# is not only unboxed, it also has a polymorphic kind, and has no runtime representation, being totally free.

data ThreadId# :: UnliftedType Source #

(In a non-concurrent implementation, this can be a singleton type, whose (unique) value is returned by myThreadId#. The other operations can be omitted.)

data StackSnapshot# :: UnliftedType Source #

Haskell representation of a StgStack* that was created (cloned) with a function in GHC.Stack.CloneStack. Please check the documentation in that module for more detailed explanations.

data FUN Source #

The builtin function type, written in infix form as a % m -> b. Values of this type are functions taking inputs of type a and producing outputs of type b. The multiplicity of the input is m.

Note that FUN m a b permits representation polymorphism in both a and b, so that types like Int# -> Int# can still be well-kinded.

Instances

Instances details
Category (->) Source #

@since base-3.0

Instance details

Defined in GHC.Internal.Control.Category

Methods

id :: a -> a Source #

(.) :: (b -> c) -> (a -> b) -> a -> c Source #

Monoid b => Monoid (a -> b) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: a -> b Source #

mappend :: (a -> b) -> (a -> b) -> a -> b Source #

mconcat :: [a -> b] -> a -> b Source #

Semigroup b => Semigroup (a -> b) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b Source #

sconcat :: NonEmpty (a -> b) -> a -> b Source #

stimes :: Integral b0 => b0 -> (a -> b) -> a -> b Source #

Arrow (->) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

arr :: (b -> c) -> b -> c Source #

first :: (b -> c) -> (b, d) -> (c, d) Source #

second :: (b -> c) -> (d, b) -> (d, c) Source #

(***) :: (b -> c) -> (b' -> c') -> (b, b') -> (c, c') Source #

(&&&) :: (b -> c) -> (b -> c') -> b -> (c, c') Source #

ArrowApply (->) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

app :: (b -> c, b) -> c Source #

ArrowChoice (->) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

left :: (b -> c) -> Either b d -> Either c d Source #

right :: (b -> c) -> Either d b -> Either d c Source #

(+++) :: (b -> c) -> (b' -> c') -> Either b b' -> Either c c' Source #

(|||) :: (b -> d) -> (c -> d) -> Either b c -> d Source #

ArrowLoop (->) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

loop :: ((b, d) -> (c, d)) -> b -> c Source #

Applicative ((->) r) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

pure :: a -> r -> a Source #

(<*>) :: (r -> (a -> b)) -> (r -> a) -> r -> b Source #

liftA2 :: (a -> b -> c) -> (r -> a) -> (r -> b) -> r -> c Source #

(*>) :: (r -> a) -> (r -> b) -> r -> b Source #

(<*) :: (r -> a) -> (r -> b) -> r -> a Source #

Functor ((->) r) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b Source #

(<$) :: a -> (r -> b) -> r -> a Source #

Monad ((->) r) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: (r -> a) -> (a -> r -> b) -> r -> b Source #

(>>) :: (r -> a) -> (r -> b) -> r -> b Source #

return :: a -> r -> a Source #

MonadFix ((->) r) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> r -> a) -> r -> a Source #

data TYPE (a :: RuntimeRep) Source #

Instances

Instances details
Generic1 NonEmpty Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 NonEmpty

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Generic1 Identity Source # 
Instance details

Defined in GHC.Internal.Data.Functor.Identity

Associated Types

type Rep1 Identity

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

type Rep1 Identity = D1 ('MetaData "Identity" "GHC.Internal.Data.Functor.Identity" "ghc-internal" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
Generic1 First Source # 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep1 First

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 First = D1 ('MetaData "First" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

Methods

from1 :: First a -> Rep1 First a Source #

to1 :: Rep1 First a -> First a Source #

Generic1 Last Source # 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep1 Last

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 Last = D1 ('MetaData "Last" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

Methods

from1 :: Last a -> Rep1 Last a Source #

to1 :: Rep1 Last a -> Last a Source #

Generic1 Down Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Down

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Down = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Down a -> Rep1 Down a Source #

to1 :: Rep1 Down a -> Down a Source #

Generic1 Dual Source # 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Dual

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Dual a -> Rep1 Dual a Source #

to1 :: Rep1 Dual a -> Dual a Source #

Generic1 Product Source # 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Product

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
Generic1 Sum Source # 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Sum

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Sum a -> Rep1 Sum a Source #

to1 :: Rep1 Sum a -> Sum a Source #

Generic1 ZipList Source # 
Instance details

Defined in GHC.Internal.Functor.ZipList

Associated Types

type Rep1 ZipList

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

type Rep1 ZipList = D1 ('MetaData "ZipList" "GHC.Internal.Functor.ZipList" "ghc-internal" 'True) (C1 ('MetaCons "ZipList" 'PrefixI 'True) (S1 ('MetaSel ('Just "getZipList") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 [])))
Generic1 Par1 Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Par1

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Par1 = D1 ('MetaData "Par1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Par1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unPar1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Par1 a -> Rep1 Par1 a Source #

to1 :: Rep1 Par1 a -> Par1 a Source #

Generic1 Maybe Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Maybe

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Maybe = D1 ('MetaData "Maybe" "GHC.Internal.Maybe" "ghc-internal" 'False) (C1 ('MetaCons "Nothing" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Just" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Maybe a -> Rep1 Maybe a Source #

to1 :: Rep1 Maybe a -> Maybe a Source #

Generic1 Solo Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Solo

@since base-4.15

Instance details

Defined in GHC.Internal.Generics

type Rep1 Solo = D1 ('MetaData "Solo" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "MkSolo" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Solo a -> Rep1 Solo a Source #

to1 :: Rep1 Solo a -> Solo a Source #

Generic1 [] Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 []

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: [a] -> Rep1 [] a Source #

to1 :: Rep1 [] a -> [a] Source #

Monad m => Category (Kleisli m :: Type -> Type -> Type) Source #

@since base-3.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

id :: Kleisli m a a Source #

(.) :: Kleisli m b c -> Kleisli m a b -> Kleisli m a c Source #

Generic1 (Either a :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (Either a :: Type -> Type)

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "GHC.Internal.Data.Either" "ghc-internal" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Either a a0 -> Rep1 (Either a) a0 Source #

to1 :: Rep1 (Either a) a0 -> Either a a0 Source #

Generic1 ((,) a :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,) a :: Type -> Type)

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, a0) -> Rep1 ((,) a) a0 Source #

to1 :: Rep1 ((,) a) a0 -> (a, a0) Source #

Category (->) Source #

@since base-3.0

Instance details

Defined in GHC.Internal.Control.Category

Methods

id :: a -> a Source #

(.) :: (b -> c) -> (a -> b) -> a -> c Source #

Generic1 (Kleisli m a :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Control.Arrow

Associated Types

type Rep1 (Kleisli m a :: Type -> Type)

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep1 (Kleisli m a :: Type -> Type) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) ((FUN 'Many a :: Type -> Type) :.: Rec1 m)))

Methods

from1 :: Kleisli m a a0 -> Rep1 (Kleisli m a) a0 Source #

to1 :: Rep1 (Kleisli m a) a0 -> Kleisli m a a0 Source #

Generic1 ((,,) a b :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,) a b :: Type -> Type)

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, a0) -> Rep1 ((,,) a b) a0 Source #

to1 :: Rep1 ((,,) a b) a0 -> (a, b, a0) Source #

Generic1 ((,,,) a b c :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, a0) -> Rep1 ((,,,) a b c) a0 Source #

to1 :: Rep1 ((,,,) a b c) a0 -> (a, b, c, a0) Source #

Generic1 ((,,,,) a b c d :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, a0) -> Rep1 ((,,,,) a b c d) a0 Source #

to1 :: Rep1 ((,,,,) a b c d) a0 -> (a, b, c, d, a0) Source #

Functor f => Generic1 (f :.: g :: k -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (f :.: g :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :.: g :: k -> Type) = D1 ('MetaData ":.:" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Comp1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unComp1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 g)))

Methods

from1 :: forall (a :: k). (f :.: g) a -> Rep1 (f :.: g) a Source #

to1 :: forall (a :: k). Rep1 (f :.: g) a -> (f :.: g) a Source #

Generic1 ((,,,,,) a b c d e :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, a0) -> Rep1 ((,,,,,) a b c d e) a0 Source #

to1 :: Rep1 ((,,,,,) a b c d e) a0 -> (a, b, c, d, e, a0) Source #

Generic1 ((,,,,,,) a b c d e f :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, a0) -> Rep1 ((,,,,,,) a b c d e f) a0 Source #

to1 :: Rep1 ((,,,,,,) a b c d e f) a0 -> (a, b, c, d, e, f, a0) Source #

Generic1 ((,,,,,,,) a b c d e f g :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, a0) -> Rep1 ((,,,,,,,) a b c d e f g) a0 Source #

to1 :: Rep1 ((,,,,,,,) a b c d e f g) a0 -> (a, b, c, d, e, f, g, a0) Source #

Generic1 ((,,,,,,,,) a b c d e f g h :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, a0) -> Rep1 ((,,,,,,,,) a b c d e f g h) a0 Source #

to1 :: Rep1 ((,,,,,,,,) a b c d e f g h) a0 -> (a, b, c, d, e, f, g, h, a0) Source #

Generic1 ((,,,,,,,,,) a b c d e f g h i :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, a0) -> Rep1 ((,,,,,,,,,) a b c d e f g h i) a0 Source #

to1 :: Rep1 ((,,,,,,,,,) a b c d e f g h i) a0 -> (a, b, c, d, e, f, g, h, i, a0) Source #

Generic1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, a0) -> Rep1 ((,,,,,,,,,,) a b c d e f g h i j) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,) a b c d e f g h i j) a0 -> (a, b, c, d, e, f, g, h, i, j, a0) Source #

Generic1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, a0) -> Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k) a0 -> (a, b, c, d, e, f, g, h, i, j, k, a0) Source #

Generic1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) = D1 ('MetaData "Tuple13" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, a0) -> Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, a0) Source #

Generic1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) = D1 ('MetaData "Tuple14" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, m, a0) -> Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, m, a0) Source #

Generic1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type)

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) = D1 ('MetaData "Tuple15" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, a0) -> Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n) a0 Source #

to1 :: Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, a0) Source #

Alternative (Proxy :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

empty :: Proxy a Source #

(<|>) :: Proxy a -> Proxy a -> Proxy a Source #

some :: Proxy a -> Proxy [a] Source #

many :: Proxy a -> Proxy [a] Source #

Alternative (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: U1 a Source #

(<|>) :: U1 a -> U1 a -> U1 a Source #

some :: U1 a -> U1 [a] Source #

many :: U1 a -> U1 [a] Source #

Applicative (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

pure :: a -> Proxy a Source #

(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b Source #

liftA2 :: (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c Source #

(*>) :: Proxy a -> Proxy b -> Proxy b Source #

(<*) :: Proxy a -> Proxy b -> Proxy a Source #

Applicative (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> U1 a Source #

(<*>) :: U1 (a -> b) -> U1 a -> U1 b Source #

liftA2 :: (a -> b -> c) -> U1 a -> U1 b -> U1 c Source #

(*>) :: U1 a -> U1 b -> U1 b Source #

(<*) :: U1 a -> U1 b -> U1 a Source #

Functor (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b Source #

(<$) :: a -> Proxy b -> Proxy a Source #

Functor (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b Source #

(<$) :: a -> U1 b -> U1 a Source #

Functor (V1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b Source #

(<$) :: a -> V1 b -> V1 a Source #

Monad (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b Source #

(>>) :: Proxy a -> Proxy b -> Proxy b Source #

return :: a -> Proxy a Source #

Monad (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b Source #

(>>) :: U1 a -> U1 b -> U1 b Source #

return :: a -> U1 a Source #

MonadPlus (Proxy :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

mzero :: Proxy a Source #

mplus :: Proxy a -> Proxy a -> Proxy a Source #

MonadPlus (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: U1 a Source #

mplus :: U1 a -> U1 a -> U1 a Source #

Foldable (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Proxy m -> m Source #

foldMap :: Monoid m => (a -> m) -> Proxy a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Proxy a -> m Source #

foldr :: (a -> b -> b) -> b -> Proxy a -> b Source #

foldr' :: (a -> b -> b) -> b -> Proxy a -> b Source #

foldl :: (b -> a -> b) -> b -> Proxy a -> b Source #

foldl' :: (b -> a -> b) -> b -> Proxy a -> b Source #

foldr1 :: (a -> a -> a) -> Proxy a -> a Source #

foldl1 :: (a -> a -> a) -> Proxy a -> a Source #

toList :: Proxy a -> [a] Source #

null :: Proxy a -> Bool Source #

length :: Proxy a -> Int Source #

elem :: Eq a => a -> Proxy a -> Bool Source #

maximum :: Ord a => Proxy a -> a Source #

minimum :: Ord a => Proxy a -> a Source #

sum :: Num a => Proxy a -> a Source #

product :: Num a => Proxy a -> a Source #

Foldable (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => U1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> U1 a -> m Source #

foldMap' :: Monoid m => (a -> m) -> U1 a -> m Source #

foldr :: (a -> b -> b) -> b -> U1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> U1 a -> b Source #

foldl :: (b -> a -> b) -> b -> U1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> U1 a -> b Source #

foldr1 :: (a -> a -> a) -> U1 a -> a Source #

foldl1 :: (a -> a -> a) -> U1 a -> a Source #

toList :: U1 a -> [a] Source #

null :: U1 a -> Bool Source #

length :: U1 a -> Int Source #

elem :: Eq a => a -> U1 a -> Bool Source #

maximum :: Ord a => U1 a -> a Source #

minimum :: Ord a => U1 a -> a Source #

sum :: Num a => U1 a -> a Source #

product :: Num a => U1 a -> a Source #

Foldable (UAddr :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UAddr m -> m Source #

foldMap :: Monoid m => (a -> m) -> UAddr a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UAddr a -> m Source #

foldr :: (a -> b -> b) -> b -> UAddr a -> b Source #

foldr' :: (a -> b -> b) -> b -> UAddr a -> b Source #

foldl :: (b -> a -> b) -> b -> UAddr a -> b Source #

foldl' :: (b -> a -> b) -> b -> UAddr a -> b Source #

foldr1 :: (a -> a -> a) -> UAddr a -> a Source #

foldl1 :: (a -> a -> a) -> UAddr a -> a Source #

toList :: UAddr a -> [a] Source #

null :: UAddr a -> Bool Source #

length :: UAddr a -> Int Source #

elem :: Eq a => a -> UAddr a -> Bool Source #

maximum :: Ord a => UAddr a -> a Source #

minimum :: Ord a => UAddr a -> a Source #

sum :: Num a => UAddr a -> a Source #

product :: Num a => UAddr a -> a Source #

Foldable (UChar :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UChar m -> m Source #

foldMap :: Monoid m => (a -> m) -> UChar a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UChar a -> m Source #

foldr :: (a -> b -> b) -> b -> UChar a -> b Source #

foldr' :: (a -> b -> b) -> b -> UChar a -> b Source #

foldl :: (b -> a -> b) -> b -> UChar a -> b Source #

foldl' :: (b -> a -> b) -> b -> UChar a -> b Source #

foldr1 :: (a -> a -> a) -> UChar a -> a Source #

foldl1 :: (a -> a -> a) -> UChar a -> a Source #

toList :: UChar a -> [a] Source #

null :: UChar a -> Bool Source #

length :: UChar a -> Int Source #

elem :: Eq a => a -> UChar a -> Bool Source #

maximum :: Ord a => UChar a -> a Source #

minimum :: Ord a => UChar a -> a Source #

sum :: Num a => UChar a -> a Source #

product :: Num a => UChar a -> a Source #

Foldable (UDouble :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UDouble m -> m Source #

foldMap :: Monoid m => (a -> m) -> UDouble a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UDouble a -> m Source #

foldr :: (a -> b -> b) -> b -> UDouble a -> b Source #

foldr' :: (a -> b -> b) -> b -> UDouble a -> b Source #

foldl :: (b -> a -> b) -> b -> UDouble a -> b Source #

foldl' :: (b -> a -> b) -> b -> UDouble a -> b Source #

foldr1 :: (a -> a -> a) -> UDouble a -> a Source #

foldl1 :: (a -> a -> a) -> UDouble a -> a Source #

toList :: UDouble a -> [a] Source #

null :: UDouble a -> Bool Source #

length :: UDouble a -> Int Source #

elem :: Eq a => a -> UDouble a -> Bool Source #

maximum :: Ord a => UDouble a -> a Source #

minimum :: Ord a => UDouble a -> a Source #

sum :: Num a => UDouble a -> a Source #

product :: Num a => UDouble a -> a Source #

Foldable (UFloat :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UFloat m -> m Source #

foldMap :: Monoid m => (a -> m) -> UFloat a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UFloat a -> m Source #

foldr :: (a -> b -> b) -> b -> UFloat a -> b Source #

foldr' :: (a -> b -> b) -> b -> UFloat a -> b Source #

foldl :: (b -> a -> b) -> b -> UFloat a -> b Source #

foldl' :: (b -> a -> b) -> b -> UFloat a -> b Source #

foldr1 :: (a -> a -> a) -> UFloat a -> a Source #

foldl1 :: (a -> a -> a) -> UFloat a -> a Source #

toList :: UFloat a -> [a] Source #

null :: UFloat a -> Bool Source #

length :: UFloat a -> Int Source #

elem :: Eq a => a -> UFloat a -> Bool Source #

maximum :: Ord a => UFloat a -> a Source #

minimum :: Ord a => UFloat a -> a Source #

sum :: Num a => UFloat a -> a Source #

product :: Num a => UFloat a -> a Source #

Foldable (UInt :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UInt m -> m Source #

foldMap :: Monoid m => (a -> m) -> UInt a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UInt a -> m Source #

foldr :: (a -> b -> b) -> b -> UInt a -> b Source #

foldr' :: (a -> b -> b) -> b -> UInt a -> b Source #

foldl :: (b -> a -> b) -> b -> UInt a -> b Source #

foldl' :: (b -> a -> b) -> b -> UInt a -> b Source #

foldr1 :: (a -> a -> a) -> UInt a -> a Source #

foldl1 :: (a -> a -> a) -> UInt a -> a Source #

toList :: UInt a -> [a] Source #

null :: UInt a -> Bool Source #

length :: UInt a -> Int Source #

elem :: Eq a => a -> UInt a -> Bool Source #

maximum :: Ord a => UInt a -> a Source #

minimum :: Ord a => UInt a -> a Source #

sum :: Num a => UInt a -> a Source #

product :: Num a => UInt a -> a Source #

Foldable (UWord :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UWord m -> m Source #

foldMap :: Monoid m => (a -> m) -> UWord a -> m Source #

foldMap' :: Monoid m => (a -> m) -> UWord a -> m Source #

foldr :: (a -> b -> b) -> b -> UWord a -> b Source #

foldr' :: (a -> b -> b) -> b -> UWord a -> b Source #

foldl :: (b -> a -> b) -> b -> UWord a -> b Source #

foldl' :: (b -> a -> b) -> b -> UWord a -> b Source #

foldr1 :: (a -> a -> a) -> UWord a -> a Source #

foldl1 :: (a -> a -> a) -> UWord a -> a Source #

toList :: UWord a -> [a] Source #

null :: UWord a -> Bool Source #

length :: UWord a -> Int Source #

elem :: Eq a => a -> UWord a -> Bool Source #

maximum :: Ord a => UWord a -> a Source #

minimum :: Ord a => UWord a -> a Source #

sum :: Num a => UWord a -> a Source #

product :: Num a => UWord a -> a Source #

Foldable (V1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => V1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> V1 a -> m Source #

foldMap' :: Monoid m => (a -> m) -> V1 a -> m Source #

foldr :: (a -> b -> b) -> b -> V1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> V1 a -> b Source #

foldl :: (b -> a -> b) -> b -> V1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> V1 a -> b Source #

foldr1 :: (a -> a -> a) -> V1 a -> a Source #

foldl1 :: (a -> a -> a) -> V1 a -> a Source #

toList :: V1 a -> [a] Source #

null :: V1 a -> Bool Source #

length :: V1 a -> Int Source #

elem :: Eq a => a -> V1 a -> Bool Source #

maximum :: Ord a => V1 a -> a Source #

minimum :: Ord a => V1 a -> a Source #

sum :: Num a => V1 a -> a Source #

product :: Num a => V1 a -> a Source #

Traversable (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Proxy a -> f (Proxy b) Source #

sequenceA :: Applicative f => Proxy (f a) -> f (Proxy a) Source #

mapM :: Monad m => (a -> m b) -> Proxy a -> m (Proxy b) Source #

sequence :: Monad m => Proxy (m a) -> m (Proxy a) Source #

Traversable (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> U1 a -> f (U1 b) Source #

sequenceA :: Applicative f => U1 (f a) -> f (U1 a) Source #

mapM :: Monad m => (a -> m b) -> U1 a -> m (U1 b) Source #

sequence :: Monad m => U1 (m a) -> m (U1 a) Source #

Traversable (UAddr :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UAddr a -> f (UAddr b) Source #

sequenceA :: Applicative f => UAddr (f a) -> f (UAddr a) Source #

mapM :: Monad m => (a -> m b) -> UAddr a -> m (UAddr b) Source #

sequence :: Monad m => UAddr (m a) -> m (UAddr a) Source #

Traversable (UChar :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UChar a -> f (UChar b) Source #

sequenceA :: Applicative f => UChar (f a) -> f (UChar a) Source #

mapM :: Monad m => (a -> m b) -> UChar a -> m (UChar b) Source #

sequence :: Monad m => UChar (m a) -> m (UChar a) Source #

Traversable (UDouble :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UDouble a -> f (UDouble b) Source #

sequenceA :: Applicative f => UDouble (f a) -> f (UDouble a) Source #

mapM :: Monad m => (a -> m b) -> UDouble a -> m (UDouble b) Source #

sequence :: Monad m => UDouble (m a) -> m (UDouble a) Source #

Traversable (UFloat :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UFloat a -> f (UFloat b) Source #

sequenceA :: Applicative f => UFloat (f a) -> f (UFloat a) Source #

mapM :: Monad m => (a -> m b) -> UFloat a -> m (UFloat b) Source #

sequence :: Monad m => UFloat (m a) -> m (UFloat a) Source #

Traversable (UInt :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UInt a -> f (UInt b) Source #

sequenceA :: Applicative f => UInt (f a) -> f (UInt a) Source #

mapM :: Monad m => (a -> m b) -> UInt a -> m (UInt b) Source #

sequence :: Monad m => UInt (m a) -> m (UInt a) Source #

Traversable (UWord :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UWord a -> f (UWord b) Source #

sequenceA :: Applicative f => UWord (f a) -> f (UWord a) Source #

mapM :: Monad m => (a -> m b) -> UWord a -> m (UWord b) Source #

sequence :: Monad m => UWord (m a) -> m (UWord a) Source #

Traversable (V1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) Source #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) Source #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) Source #

sequence :: Monad m => V1 (m a) -> m (V1 a) Source #

Alternative f => Alternative (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

empty :: Ap f a Source #

(<|>) :: Ap f a -> Ap f a -> Ap f a Source #

some :: Ap f a -> Ap f [a] Source #

many :: Ap f a -> Ap f [a] Source #

Alternative f => Alternative (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

empty :: Alt f a Source #

(<|>) :: Alt f a -> Alt f a -> Alt f a Source #

some :: Alt f a -> Alt f [a] Source #

many :: Alt f a -> Alt f [a] Source #

(Generic1 f, Alternative (Rep1 f)) => Alternative (Generically1 f) Source #

@since base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Alternative f => Alternative (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: Rec1 f a Source #

(<|>) :: Rec1 f a -> Rec1 f a -> Rec1 f a Source #

some :: Rec1 f a -> Rec1 f [a] Source #

many :: Rec1 f a -> Rec1 f [a] Source #

Monoid m => Applicative (Const m :: Type -> Type) Source #

@since base-2.0.1

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

pure :: a -> Const m a Source #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b Source #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c Source #

(*>) :: Const m a -> Const m b -> Const m b Source #

(<*) :: Const m a -> Const m b -> Const m a Source #

Applicative f => Applicative (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

pure :: a -> Ap f a Source #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b Source #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c Source #

(*>) :: Ap f a -> Ap f b -> Ap f b Source #

(<*) :: Ap f a -> Ap f b -> Ap f a Source #

Applicative f => Applicative (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

pure :: a -> Alt f a Source #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b Source #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c Source #

(*>) :: Alt f a -> Alt f b -> Alt f b Source #

(<*) :: Alt f a -> Alt f b -> Alt f a Source #

(Generic1 f, Applicative (Rep1 f)) => Applicative (Generically1 f) Source #

@since base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> Generically1 f a Source #

(<*>) :: Generically1 f (a -> b) -> Generically1 f a -> Generically1 f b Source #

liftA2 :: (a -> b -> c) -> Generically1 f a -> Generically1 f b -> Generically1 f c Source #

(*>) :: Generically1 f a -> Generically1 f b -> Generically1 f b Source #

(<*) :: Generically1 f a -> Generically1 f b -> Generically1 f a Source #

Applicative f => Applicative (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> Rec1 f a Source #

(<*>) :: Rec1 f (a -> b) -> Rec1 f a -> Rec1 f b Source #

liftA2 :: (a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c Source #

(*>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

(<*) :: Rec1 f a -> Rec1 f b -> Rec1 f a Source #

Functor (Const m :: Type -> Type) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b Source #

(<$) :: a -> Const m b -> Const m a Source #

Functor f => Functor (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b Source #

(<$) :: a -> Ap f b -> Ap f a Source #

Functor f => Functor (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b Source #

(<$) :: a -> Alt f b -> Alt f a Source #

(Generic1 f, Functor (Rep1 f)) => Functor (Generically1 f) Source #

@since base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> Generically1 f a -> Generically1 f b Source #

(<$) :: a -> Generically1 f b -> Generically1 f a Source #

Functor f => Functor (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b Source #

(<$) :: a -> Rec1 f b -> Rec1 f a Source #

Functor (URec (Ptr ()) :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b Source #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a Source #

Functor (URec Char :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b Source #

(<$) :: a -> URec Char b -> URec Char a Source #

Functor (URec Double :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b Source #

(<$) :: a -> URec Double b -> URec Double a Source #

Functor (URec Float :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b Source #

(<$) :: a -> URec Float b -> URec Float a Source #

Functor (URec Int :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b Source #

(<$) :: a -> URec Int b -> URec Int a Source #

Functor (URec Word :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b Source #

(<$) :: a -> URec Word b -> URec Word a Source #

Monad f => Monad (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b Source #

(>>) :: Ap f a -> Ap f b -> Ap f b Source #

return :: a -> Ap f a Source #

Monad f => Monad (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b Source #

(>>) :: Alt f a -> Alt f b -> Alt f b Source #

return :: a -> Alt f a Source #

Monad f => Monad (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b Source #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

return :: a -> Rec1 f a Source #

MonadPlus f => MonadPlus (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mzero :: Ap f a Source #

mplus :: Ap f a -> Ap f a -> Ap f a Source #

MonadPlus f => MonadPlus (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mzero :: Alt f a Source #

mplus :: Alt f a -> Alt f a -> Alt f a Source #

MonadPlus f => MonadPlus (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: Rec1 f a Source #

mplus :: Rec1 f a -> Rec1 f a -> Rec1 f a Source #

MonadFail f => MonadFail (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fail :: String -> Ap f a Source #

MonadFix f => MonadFix (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Ap f a) -> Ap f a Source #

MonadFix f => MonadFix (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Alt f a) -> Alt f a Source #

MonadFix f => MonadFix (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Rec1 f a) -> Rec1 f a Source #

Data t => Data (Proxy t) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) Source #

toConstr :: Proxy t -> Constr Source #

dataTypeOf :: Proxy t -> DataType Source #

dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) Source #

dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) Source #

gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

Data p => Data (U1 p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) Source #

toConstr :: U1 p -> Constr Source #

dataTypeOf :: U1 p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) Source #

gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

Data p => Data (V1 p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) Source #

toConstr :: V1 p -> Constr Source #

dataTypeOf :: V1 p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) Source #

gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

Foldable (Const m :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 Source #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source #

foldr :: (a -> b -> b) -> b -> Const m a -> b Source #

foldr' :: (a -> b -> b) -> b -> Const m a -> b Source #

foldl :: (b -> a -> b) -> b -> Const m a -> b Source #

foldl' :: (b -> a -> b) -> b -> Const m a -> b Source #

foldr1 :: (a -> a -> a) -> Const m a -> a Source #

foldl1 :: (a -> a -> a) -> Const m a -> a Source #

toList :: Const m a -> [a] Source #

null :: Const m a -> Bool Source #

length :: Const m a -> Int Source #

elem :: Eq a => a -> Const m a -> Bool Source #

maximum :: Ord a => Const m a -> a Source #

minimum :: Ord a => Const m a -> a Source #

sum :: Num a => Const m a -> a Source #

product :: Num a => Const m a -> a Source #

Foldable f => Foldable (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Ap f a -> m Source #

foldr :: (a -> b -> b) -> b -> Ap f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b Source #

foldl :: (b -> a -> b) -> b -> Ap f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b Source #

foldr1 :: (a -> a -> a) -> Ap f a -> a Source #

foldl1 :: (a -> a -> a) -> Ap f a -> a Source #

toList :: Ap f a -> [a] Source #

null :: Ap f a -> Bool Source #

length :: Ap f a -> Int Source #

elem :: Eq a => a -> Ap f a -> Bool Source #

maximum :: Ord a => Ap f a -> a Source #

minimum :: Ord a => Ap f a -> a Source #

sum :: Num a => Ap f a -> a Source #

product :: Num a => Ap f a -> a Source #

Foldable f => Foldable (Alt f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Alt f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Alt f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Alt f a -> m Source #

foldr :: (a -> b -> b) -> b -> Alt f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Alt f a -> b Source #

foldl :: (b -> a -> b) -> b -> Alt f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Alt f a -> b Source #

foldr1 :: (a -> a -> a) -> Alt f a -> a Source #

foldl1 :: (a -> a -> a) -> Alt f a -> a Source #

toList :: Alt f a -> [a] Source #

null :: Alt f a -> Bool Source #

length :: Alt f a -> Int Source #

elem :: Eq a => a -> Alt f a -> Bool Source #

maximum :: Ord a => Alt f a -> a Source #

minimum :: Ord a => Alt f a -> a Source #

sum :: Num a => Alt f a -> a Source #

product :: Num a => Alt f a -> a Source #

Foldable f => Foldable (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Rec1 f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m Source #

foldr :: (a -> b -> b) -> b -> Rec1 f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b Source #

foldl :: (b -> a -> b) -> b -> Rec1 f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b Source #

foldr1 :: (a -> a -> a) -> Rec1 f a -> a Source #

foldl1 :: (a -> a -> a) -> Rec1 f a -> a Source #

toList :: Rec1 f a -> [a] Source #

null :: Rec1 f a -> Bool Source #

length :: Rec1 f a -> Int Source #

elem :: Eq a => a -> Rec1 f a -> Bool Source #

maximum :: Ord a => Rec1 f a -> a Source #

minimum :: Ord a => Rec1 f a -> a Source #

sum :: Num a => Rec1 f a -> a Source #

product :: Num a => Rec1 f a -> a Source #

Traversable (Const m :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) Source #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) Source #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) Source #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) Source #

Traversable f => Traversable (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) Source #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) Source #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) Source #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) Source #

Traversable f => Traversable (Alt f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) Source #

sequenceA :: Applicative f0 => Alt f (f0 a) -> f0 (Alt f a) Source #

mapM :: Monad m => (a -> m b) -> Alt f a -> m (Alt f b) Source #

sequence :: Monad m => Alt f (m a) -> m (Alt f a) Source #

Traversable f => Traversable (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) Source #

sequenceA :: Applicative f0 => Rec1 f (f0 a) -> f0 (Rec1 f a) Source #

mapM :: Monad m => (a -> m b) -> Rec1 f a -> m (Rec1 f b) Source #

sequence :: Monad m => Rec1 f (m a) -> m (Rec1 f a) Source #

(Alternative f, Alternative g) => Alternative (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: (f :*: g) a Source #

(<|>) :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a Source #

some :: (f :*: g) a -> (f :*: g) [a] Source #

many :: (f :*: g) a -> (f :*: g) [a] Source #

(Applicative f, Applicative g) => Applicative (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> (f :*: g) a Source #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

liftA2 :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c Source #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a Source #

Monoid c => Applicative (K1 i c :: Type -> Type) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> K1 i c a Source #

(<*>) :: K1 i c (a -> b) -> K1 i c a -> K1 i c b Source #

liftA2 :: (a -> b -> c0) -> K1 i c a -> K1 i c b -> K1 i c c0 Source #

(*>) :: K1 i c a -> K1 i c b -> K1 i c b Source #

(<*) :: K1 i c a -> K1 i c b -> K1 i c a Source #

(Functor f, Functor g) => Functor (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

(<$) :: a -> (f :*: g) b -> (f :*: g) a Source #

(Functor f, Functor g) => Functor (f :+: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b Source #

(<$) :: a -> (f :+: g) b -> (f :+: g) a Source #

Functor (K1 i c :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b Source #

(<$) :: a -> K1 i c b -> K1 i c a Source #

(Monad f, Monad g) => Monad (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b Source #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

return :: a -> (f :*: g) a Source #

(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: (f :*: g) a Source #

mplus :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a Source #

(Applicative f, Monoid a) => Monoid (Ap f a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mempty :: Ap f a Source #

mappend :: Ap f a -> Ap f a -> Ap f a Source #

mconcat :: [Ap f a] -> Ap f a Source #

Alternative f => Monoid (Alt f a) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Alt f a Source #

mappend :: Alt f a -> Alt f a -> Alt f a Source #

mconcat :: [Alt f a] -> Alt f a Source #

(Applicative f, Semigroup a) => Semigroup (Ap f a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a Source #

sconcat :: NonEmpty (Ap f a) -> Ap f a Source #

stimes :: Integral b => b -> Ap f a -> Ap f a Source #

Alternative f => Semigroup (Alt f a) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a Source #

sconcat :: NonEmpty (Alt f a) -> Alt f a Source #

stimes :: Integral b => b -> Alt f a -> Alt f a Source #

(MonadFix f, MonadFix g) => MonadFix (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> (f :*: g) a) -> (f :*: g) a Source #

(Data (f a), Data a, Typeable f) => Data (Ap f a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) Source #

toConstr :: Ap f a -> Constr Source #

dataTypeOf :: Ap f a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source #

(Data (f a), Data a, Typeable f) => Data (Alt f a) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) Source #

toConstr :: Alt f a -> Constr Source #

dataTypeOf :: Alt f a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

(Coercible a b, Data a, Data b) => Data (Coercion a b) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) Source #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) Source #

toConstr :: Coercion a b -> Constr Source #

dataTypeOf :: Coercion a b -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) Source #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

(a ~ b, Data a) => Data (a :~: b) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) Source #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) Source #

toConstr :: (a :~: b) -> Constr Source #

dataTypeOf :: (a :~: b) -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) Source #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

(Data (f p), Typeable f, Data p) => Data (Rec1 f p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) Source #

toConstr :: Rec1 f p -> Constr Source #

dataTypeOf :: Rec1 f p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) Source #

gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

(Foldable f, Foldable g) => Foldable (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :*: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a Source #

toList :: (f :*: g) a -> [a] Source #

null :: (f :*: g) a -> Bool Source #

length :: (f :*: g) a -> Int Source #

elem :: Eq a => a -> (f :*: g) a -> Bool Source #

maximum :: Ord a => (f :*: g) a -> a Source #

minimum :: Ord a => (f :*: g) a -> a Source #

sum :: Num a => (f :*: g) a -> a Source #

product :: Num a => (f :*: g) a -> a Source #

(Foldable f, Foldable g) => Foldable (f :+: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :+: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a Source #

toList :: (f :+: g) a -> [a] Source #

null :: (f :+: g) a -> Bool Source #

length :: (f :+: g) a -> Int Source #

elem :: Eq a => a -> (f :+: g) a -> Bool Source #

maximum :: Ord a => (f :+: g) a -> a Source #

minimum :: Ord a => (f :+: g) a -> a Source #

sum :: Num a => (f :+: g) a -> a Source #

product :: Num a => (f :+: g) a -> a Source #

Foldable (K1 i c :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => K1 i c m -> m Source #

foldMap :: Monoid m => (a -> m) -> K1 i c a -> m Source #

foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m Source #

foldr :: (a -> b -> b) -> b -> K1 i c a -> b Source #

foldr' :: (a -> b -> b) -> b -> K1 i c a -> b Source #

foldl :: (b -> a -> b) -> b -> K1 i c a -> b Source #

foldl' :: (b -> a -> b) -> b -> K1 i c a -> b Source #

foldr1 :: (a -> a -> a) -> K1 i c a -> a Source #

foldl1 :: (a -> a -> a) -> K1 i c a -> a Source #

toList :: K1 i c a -> [a] Source #

null :: K1 i c a -> Bool Source #

length :: K1 i c a -> Int Source #

elem :: Eq a => a -> K1 i c a -> Bool Source #

maximum :: Ord a => K1 i c a -> a Source #

minimum :: Ord a => K1 i c a -> a Source #

sum :: Num a => K1 i c a -> a Source #

product :: Num a => K1 i c a -> a Source #

(Traversable f, Traversable g) => Traversable (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) Source #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) Source #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) Source #

(Traversable f, Traversable g) => Traversable (f :+: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) Source #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) Source #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) Source #

Traversable (K1 i c :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> K1 i c a -> f (K1 i c b) Source #

sequenceA :: Applicative f => K1 i c (f a) -> f (K1 i c a) Source #

mapM :: Monad m => (a -> m b) -> K1 i c a -> m (K1 i c b) Source #

sequence :: Monad m => K1 i c (m a) -> m (K1 i c a) Source #

(Applicative f, Bounded a) => Bounded (Ap f a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

minBound :: Ap f a Source #

maxBound :: Ap f a Source #

(Applicative f, Num a) => Num (Ap f a) Source #

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a Source #

(-) :: Ap f a -> Ap f a -> Ap f a Source #

(*) :: Ap f a -> Ap f a -> Ap f a Source #

negate :: Ap f a -> Ap f a Source #

abs :: Ap f a -> Ap f a Source #

signum :: Ap f a -> Ap f a Source #

fromInteger :: Integer -> Ap f a Source #

(Alternative f, Applicative g) => Alternative (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: (f :.: g) a Source #

(<|>) :: (f :.: g) a -> (f :.: g) a -> (f :.: g) a Source #

some :: (f :.: g) a -> (f :.: g) [a] Source #

many :: (f :.: g) a -> (f :.: g) [a] Source #

Alternative f => Alternative (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

empty :: M1 i c f a Source #

(<|>) :: M1 i c f a -> M1 i c f a -> M1 i c f a Source #

some :: M1 i c f a -> M1 i c f [a] Source #

many :: M1 i c f a -> M1 i c f [a] Source #

(Applicative f, Applicative g) => Applicative (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> (f :.: g) a Source #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

liftA2 :: (a -> b -> c) -> (f :.: g) a -> (f :.: g) b -> (f :.: g) c Source #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b Source #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a Source #

Applicative f => Applicative (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

pure :: a -> M1 i c f a Source #

(<*>) :: M1 i c f (a -> b) -> M1 i c f a -> M1 i c f b Source #

liftA2 :: (a -> b -> c0) -> M1 i c f a -> M1 i c f b -> M1 i c f c0 Source #

(*>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

(<*) :: M1 i c f a -> M1 i c f b -> M1 i c f a Source #

(Functor f, Functor g) => Functor (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

(<$) :: a -> (f :.: g) b -> (f :.: g) a Source #

Functor f => Functor (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b Source #

(<$) :: a -> M1 i c f b -> M1 i c f a Source #

Monad f => Monad (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b Source #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

return :: a -> M1 i c f a Source #

MonadPlus f => MonadPlus (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: M1 i c f a Source #

mplus :: M1 i c f a -> M1 i c f a -> M1 i c f a Source #

MonadFix f => MonadFix (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> M1 i c f a) -> M1 i c f a Source #

(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) Source #

toConstr :: (f :*: g) p -> Constr Source #

dataTypeOf :: (f :*: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) Source #

toConstr :: (f :+: g) p -> Constr Source #

dataTypeOf :: (f :+: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

(Typeable i, Data p, Data c) => Data (K1 i c p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) Source #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) Source #

toConstr :: K1 i c p -> Constr Source #

dataTypeOf :: K1 i c p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) Source #

gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

(Foldable f, Foldable g) => Foldable (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :.: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

toList :: (f :.: g) a -> [a] Source #

null :: (f :.: g) a -> Bool Source #

length :: (f :.: g) a -> Int Source #

elem :: Eq a => a -> (f :.: g) a -> Bool Source #

maximum :: Ord a => (f :.: g) a -> a Source #

minimum :: Ord a => (f :.: g) a -> a Source #

sum :: Num a => (f :.: g) a -> a Source #

product :: Num a => (f :.: g) a -> a Source #

Foldable f => Foldable (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => M1 i c f m -> m Source #

foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m Source #

foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m Source #

foldr :: (a -> b -> b) -> b -> M1 i c f a -> b Source #

foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b Source #

foldl :: (b -> a -> b) -> b -> M1 i c f a -> b Source #

foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b Source #

foldr1 :: (a -> a -> a) -> M1 i c f a -> a Source #

foldl1 :: (a -> a -> a) -> M1 i c f a -> a Source #

toList :: M1 i c f a -> [a] Source #

null :: M1 i c f a -> Bool Source #

length :: M1 i c f a -> Int Source #

elem :: Eq a => a -> M1 i c f a -> Bool Source #

maximum :: Ord a => M1 i c f a -> a Source #

minimum :: Ord a => M1 i c f a -> a Source #

sum :: Num a => M1 i c f a -> a Source #

product :: Num a => M1 i c f a -> a Source #

(Traversable f, Traversable g) => Traversable (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) Source #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) Source #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) Source #

Traversable f => Traversable (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) Source #

sequenceA :: Applicative f0 => M1 i c f (f0 a) -> f0 (M1 i c f a) Source #

mapM :: Monad m => (a -> m b) -> M1 i c f a -> m (M1 i c f b) Source #

sequence :: Monad m => M1 i c f (m a) -> m (M1 i c f a) Source #

(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) Source #

toConstr :: (f :.: g) p -> Constr Source #

dataTypeOf :: (f :.: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) Source #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) Source #

toConstr :: M1 i c f p -> Constr Source #

dataTypeOf :: M1 i c f p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) Source #

gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

type Rep1 NonEmpty Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Identity Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

type Rep1 Identity = D1 ('MetaData "Identity" "GHC.Internal.Data.Functor.Identity" "ghc-internal" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 First Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 First = D1 ('MetaData "First" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))
type Rep1 Last Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 Last = D1 ('MetaData "Last" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))
type Rep1 Down Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Down = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Dual Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Product Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Sum Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 ZipList Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

type Rep1 ZipList = D1 ('MetaData "ZipList" "GHC.Internal.Functor.ZipList" "ghc-internal" 'True) (C1 ('MetaCons "ZipList" 'PrefixI 'True) (S1 ('MetaSel ('Just "getZipList") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 [])))
type Rep1 Par1 Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Par1 = D1 ('MetaData "Par1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Par1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unPar1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Maybe Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Maybe = D1 ('MetaData "Maybe" "GHC.Internal.Maybe" "ghc-internal" 'False) (C1 ('MetaCons "Nothing" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Just" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 Solo Source #

@since base-4.15

Instance details

Defined in GHC.Internal.Generics

type Rep1 Solo = D1 ('MetaData "Solo" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "MkSolo" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 [] Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Either a :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "GHC.Internal.Data.Either" "ghc-internal" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep1 ((,) a :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Kleisli m a :: Type -> Type) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep1 (Kleisli m a :: Type -> Type) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) ((FUN 'Many a :: Type -> Type) :.: Rec1 m)))
type Rep1 ((,,) a b :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,) a b c :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,) a b c d :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :.: g :: k -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :.: g :: k -> Type) = D1 ('MetaData ":.:" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Comp1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unComp1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 g)))
type Rep1 ((,,,,,) a b c d e :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,) a b c d e f :: Type -> Type) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,) a b c d e f g :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,) a b c d e f g h :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,) a b c d e f g h i :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) = D1 ('MetaData "Tuple13" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))
type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) = D1 ('MetaData "Tuple14" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))
type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) Source #

@since base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) = D1 ('MetaData "Tuple15" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

data Int8X16# :: TYPE ('VecRep 'Vec16 'Int8ElemRep) Source #

Warning: this is only available on LLVM.

data Int16X8# :: TYPE ('VecRep 'Vec8 'Int16ElemRep) Source #

Warning: this is only available on LLVM.

data Int32X4# :: TYPE ('VecRep 'Vec4 'Int32ElemRep) Source #

Warning: this is only available on LLVM.

data Int64X2# :: TYPE ('VecRep 'Vec2 'Int64ElemRep) Source #

Warning: this is only available on LLVM.

data Int8X32# :: TYPE ('VecRep 'Vec32 'Int8ElemRep) Source #

Warning: this is only available on LLVM.

data Int16X16# :: TYPE ('VecRep 'Vec16 'Int16ElemRep) Source #

Warning: this is only available on LLVM.

data Int32X8# :: TYPE ('VecRep 'Vec8 'Int32ElemRep) Source #

Warning: this is only available on LLVM.

data Int64X4# :: TYPE ('VecRep 'Vec4 'Int64ElemRep) Source #

Warning: this is only available on LLVM.

data Int8X64# :: TYPE ('VecRep 'Vec64 'Int8ElemRep) Source #

Warning: this is only available on LLVM.

data Int16X32# :: TYPE ('VecRep 'Vec32 'Int16ElemRep) Source #

Warning: this is only available on LLVM.

data Int32X16# :: TYPE ('VecRep 'Vec16 'Int32ElemRep) Source #

Warning: this is only available on LLVM.

data Int64X8# :: TYPE ('VecRep 'Vec8 'Int64ElemRep) Source #

Warning: this is only available on LLVM.

data Word8X16# :: TYPE ('VecRep 'Vec16 'Word8ElemRep) Source #

Warning: this is only available on LLVM.

data Word16X8# :: TYPE ('VecRep 'Vec8 'Word16ElemRep) Source #

Warning: this is only available on LLVM.

data Word32X4# :: TYPE ('VecRep 'Vec4 'Word32ElemRep) Source #

Warning: this is only available on LLVM.

data Word64X2# :: TYPE ('VecRep 'Vec2 'Word64ElemRep) Source #

Warning: this is only available on LLVM.

data Word8X32# :: TYPE ('VecRep 'Vec32 'Word8ElemRep) Source #

Warning: this is only available on LLVM.

data Word16X16# :: TYPE ('VecRep 'Vec16 'Word16ElemRep) Source #

Warning: this is only available on LLVM.

data Word32X8# :: TYPE ('VecRep 'Vec8 'Word32ElemRep) Source #

Warning: this is only available on LLVM.

data Word64X4# :: TYPE ('VecRep 'Vec4 'Word64ElemRep) Source #

Warning: this is only available on LLVM.

data Word8X64# :: TYPE ('VecRep 'Vec64 'Word8ElemRep) Source #

Warning: this is only available on LLVM.

data Word16X32# :: TYPE ('VecRep 'Vec32 'Word16ElemRep) Source #

Warning: this is only available on LLVM.

data Word32X16# :: TYPE ('VecRep 'Vec16 'Word32ElemRep) Source #

Warning: this is only available on LLVM.

data Word64X8# :: TYPE ('VecRep 'Vec8 'Word64ElemRep) Source #

Warning: this is only available on LLVM.

data FloatX4# :: TYPE ('VecRep 'Vec4 'FloatElemRep) Source #

Warning: this is only available on LLVM.

data DoubleX2# :: TYPE ('VecRep 'Vec2 'DoubleElemRep) Source #

Warning: this is only available on LLVM.

data FloatX8# :: TYPE ('VecRep 'Vec8 'FloatElemRep) Source #

Warning: this is only available on LLVM.

data DoubleX4# :: TYPE ('VecRep 'Vec4 'DoubleElemRep) Source #

Warning: this is only available on LLVM.

data FloatX16# :: TYPE ('VecRep 'Vec16 'FloatElemRep) Source #

Warning: this is only available on LLVM.

data DoubleX8# :: TYPE ('VecRep 'Vec8 'DoubleElemRep) Source #

Warning: this is only available on LLVM.

writeDoubleOffAddrAsDoubleX8# :: Addr# -> Int# -> DoubleX8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatOffAddrAsFloatX16# :: Addr# -> Int# -> FloatX16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeDoubleOffAddrAsDoubleX4# :: Addr# -> Int# -> DoubleX4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatOffAddrAsFloatX8# :: Addr# -> Int# -> FloatX8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeDoubleOffAddrAsDoubleX2# :: Addr# -> Int# -> DoubleX2# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatOffAddrAsFloatX4# :: Addr# -> Int# -> FloatX4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64OffAddrAsWord64X8# :: Addr# -> Int# -> Word64X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32OffAddrAsWord32X16# :: Addr# -> Int# -> Word32X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16OffAddrAsWord16X32# :: Addr# -> Int# -> Word16X32# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8OffAddrAsWord8X64# :: Addr# -> Int# -> Word8X64# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64OffAddrAsWord64X4# :: Addr# -> Int# -> Word64X4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32OffAddrAsWord32X8# :: Addr# -> Int# -> Word32X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16OffAddrAsWord16X16# :: Addr# -> Int# -> Word16X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8OffAddrAsWord8X32# :: Addr# -> Int# -> Word8X32# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64OffAddrAsWord64X2# :: Addr# -> Int# -> Word64X2# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32OffAddrAsWord32X4# :: Addr# -> Int# -> Word32X4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16OffAddrAsWord16X8# :: Addr# -> Int# -> Word16X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8OffAddrAsWord8X16# :: Addr# -> Int# -> Word8X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64OffAddrAsInt64X8# :: Addr# -> Int# -> Int64X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32OffAddrAsInt32X16# :: Addr# -> Int# -> Int32X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16OffAddrAsInt16X32# :: Addr# -> Int# -> Int16X32# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8OffAddrAsInt8X64# :: Addr# -> Int# -> Int8X64# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64OffAddrAsInt64X4# :: Addr# -> Int# -> Int64X4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32OffAddrAsInt32X8# :: Addr# -> Int# -> Int32X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16OffAddrAsInt16X16# :: Addr# -> Int# -> Int16X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8OffAddrAsInt8X32# :: Addr# -> Int# -> Int8X32# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64OffAddrAsInt64X2# :: Addr# -> Int# -> Int64X2# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32OffAddrAsInt32X4# :: Addr# -> Int# -> Int32X4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16OffAddrAsInt16X8# :: Addr# -> Int# -> Int16X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8OffAddrAsInt8X16# :: Addr# -> Int# -> Int8X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleOffAddrAsDoubleX8# :: Addr# -> Int# -> State# d -> (# State# d, DoubleX8# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatOffAddrAsFloatX16# :: Addr# -> Int# -> State# d -> (# State# d, FloatX16# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleOffAddrAsDoubleX4# :: Addr# -> Int# -> State# d -> (# State# d, DoubleX4# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatOffAddrAsFloatX8# :: Addr# -> Int# -> State# d -> (# State# d, FloatX8# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleOffAddrAsDoubleX2# :: Addr# -> Int# -> State# d -> (# State# d, DoubleX2# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatOffAddrAsFloatX4# :: Addr# -> Int# -> State# d -> (# State# d, FloatX4# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64OffAddrAsWord64X8# :: Addr# -> Int# -> State# d -> (# State# d, Word64X8# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32OffAddrAsWord32X16# :: Addr# -> Int# -> State# d -> (# State# d, Word32X16# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16OffAddrAsWord16X32# :: Addr# -> Int# -> State# d -> (# State# d, Word16X32# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8OffAddrAsWord8X64# :: Addr# -> Int# -> State# d -> (# State# d, Word8X64# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64OffAddrAsWord64X4# :: Addr# -> Int# -> State# d -> (# State# d, Word64X4# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32OffAddrAsWord32X8# :: Addr# -> Int# -> State# d -> (# State# d, Word32X8# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16OffAddrAsWord16X16# :: Addr# -> Int# -> State# d -> (# State# d, Word16X16# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8OffAddrAsWord8X32# :: Addr# -> Int# -> State# d -> (# State# d, Word8X32# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64OffAddrAsWord64X2# :: Addr# -> Int# -> State# d -> (# State# d, Word64X2# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32OffAddrAsWord32X4# :: Addr# -> Int# -> State# d -> (# State# d, Word32X4# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16OffAddrAsWord16X8# :: Addr# -> Int# -> State# d -> (# State# d, Word16X8# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8OffAddrAsWord8X16# :: Addr# -> Int# -> State# d -> (# State# d, Word8X16# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64OffAddrAsInt64X8# :: Addr# -> Int# -> State# d -> (# State# d, Int64X8# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32OffAddrAsInt32X16# :: Addr# -> Int# -> State# d -> (# State# d, Int32X16# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16OffAddrAsInt16X32# :: Addr# -> Int# -> State# d -> (# State# d, Int16X32# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8OffAddrAsInt8X64# :: Addr# -> Int# -> State# d -> (# State# d, Int8X64# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64OffAddrAsInt64X4# :: Addr# -> Int# -> State# d -> (# State# d, Int64X4# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32OffAddrAsInt32X8# :: Addr# -> Int# -> State# d -> (# State# d, Int32X8# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16OffAddrAsInt16X16# :: Addr# -> Int# -> State# d -> (# State# d, Int16X16# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8OffAddrAsInt8X32# :: Addr# -> Int# -> State# d -> (# State# d, Int8X32# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64OffAddrAsInt64X2# :: Addr# -> Int# -> State# d -> (# State# d, Int64X2# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32OffAddrAsInt32X4# :: Addr# -> Int# -> State# d -> (# State# d, Int32X4# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16OffAddrAsInt16X8# :: Addr# -> Int# -> State# d -> (# State# d, Int16X8# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8OffAddrAsInt8X16# :: Addr# -> Int# -> State# d -> (# State# d, Int8X16# #) Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

indexDoubleOffAddrAsDoubleX8# :: Addr# -> Int# -> DoubleX8# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexFloatOffAddrAsFloatX16# :: Addr# -> Int# -> FloatX16# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexDoubleOffAddrAsDoubleX4# :: Addr# -> Int# -> DoubleX4# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexFloatOffAddrAsFloatX8# :: Addr# -> Int# -> FloatX8# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexDoubleOffAddrAsDoubleX2# :: Addr# -> Int# -> DoubleX2# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexFloatOffAddrAsFloatX4# :: Addr# -> Int# -> FloatX4# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord64OffAddrAsWord64X8# :: Addr# -> Int# -> Word64X8# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord32OffAddrAsWord32X16# :: Addr# -> Int# -> Word32X16# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord16OffAddrAsWord16X32# :: Addr# -> Int# -> Word16X32# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord8OffAddrAsWord8X64# :: Addr# -> Int# -> Word8X64# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord64OffAddrAsWord64X4# :: Addr# -> Int# -> Word64X4# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord32OffAddrAsWord32X8# :: Addr# -> Int# -> Word32X8# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord16OffAddrAsWord16X16# :: Addr# -> Int# -> Word16X16# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord8OffAddrAsWord8X32# :: Addr# -> Int# -> Word8X32# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord64OffAddrAsWord64X2# :: Addr# -> Int# -> Word64X2# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord32OffAddrAsWord32X4# :: Addr# -> Int# -> Word32X4# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord16OffAddrAsWord16X8# :: Addr# -> Int# -> Word16X8# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexWord8OffAddrAsWord8X16# :: Addr# -> Int# -> Word8X16# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt64OffAddrAsInt64X8# :: Addr# -> Int# -> Int64X8# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt32OffAddrAsInt32X16# :: Addr# -> Int# -> Int32X16# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt16OffAddrAsInt16X32# :: Addr# -> Int# -> Int16X32# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt8OffAddrAsInt8X64# :: Addr# -> Int# -> Int8X64# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt64OffAddrAsInt64X4# :: Addr# -> Int# -> Int64X4# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt32OffAddrAsInt32X8# :: Addr# -> Int# -> Int32X8# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt16OffAddrAsInt16X16# :: Addr# -> Int# -> Int16X16# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt8OffAddrAsInt8X32# :: Addr# -> Int# -> Int8X32# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt64OffAddrAsInt64X2# :: Addr# -> Int# -> Int64X2# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt32OffAddrAsInt32X4# :: Addr# -> Int# -> Int32X4# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt16OffAddrAsInt16X8# :: Addr# -> Int# -> Int16X8# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

indexInt8OffAddrAsInt8X16# :: Addr# -> Int# -> Int8X16# Source #

Reads vector; offset in scalar elements.

Warning: this is only available on LLVM.

writeDoubleArrayAsDoubleX8# :: MutableByteArray# d -> Int# -> DoubleX8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatArrayAsFloatX16# :: MutableByteArray# d -> Int# -> FloatX16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeDoubleArrayAsDoubleX4# :: MutableByteArray# d -> Int# -> DoubleX4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatArrayAsFloatX8# :: MutableByteArray# d -> Int# -> FloatX8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeDoubleArrayAsDoubleX2# :: MutableByteArray# d -> Int# -> DoubleX2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatArrayAsFloatX4# :: MutableByteArray# d -> Int# -> FloatX4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64ArrayAsWord64X8# :: MutableByteArray# d -> Int# -> Word64X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32ArrayAsWord32X16# :: MutableByteArray# d -> Int# -> Word32X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16ArrayAsWord16X32# :: MutableByteArray# d -> Int# -> Word16X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8ArrayAsWord8X64# :: MutableByteArray# d -> Int# -> Word8X64# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64ArrayAsWord64X4# :: MutableByteArray# d -> Int# -> Word64X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32ArrayAsWord32X8# :: MutableByteArray# d -> Int# -> Word32X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16ArrayAsWord16X16# :: MutableByteArray# d -> Int# -> Word16X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8ArrayAsWord8X32# :: MutableByteArray# d -> Int# -> Word8X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64ArrayAsWord64X2# :: MutableByteArray# d -> Int# -> Word64X2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32ArrayAsWord32X4# :: MutableByteArray# d -> Int# -> Word32X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16ArrayAsWord16X8# :: MutableByteArray# d -> Int# -> Word16X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8ArrayAsWord8X16# :: MutableByteArray# d -> Int# -> Word8X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64ArrayAsInt64X8# :: MutableByteArray# d -> Int# -> Int64X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32ArrayAsInt32X16# :: MutableByteArray# d -> Int# -> Int32X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16ArrayAsInt16X32# :: MutableByteArray# d -> Int# -> Int16X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8ArrayAsInt8X64# :: MutableByteArray# d -> Int# -> Int8X64# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64ArrayAsInt64X4# :: MutableByteArray# d -> Int# -> Int64X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32ArrayAsInt32X8# :: MutableByteArray# d -> Int# -> Int32X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16ArrayAsInt16X16# :: MutableByteArray# d -> Int# -> Int16X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8ArrayAsInt8X32# :: MutableByteArray# d -> Int# -> Int8X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64ArrayAsInt64X2# :: MutableByteArray# d -> Int# -> Int64X2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32ArrayAsInt32X4# :: MutableByteArray# d -> Int# -> Int32X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16ArrayAsInt16X8# :: MutableByteArray# d -> Int# -> Int16X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8ArrayAsInt8X16# :: MutableByteArray# d -> Int# -> Int8X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleArrayAsDoubleX8# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, DoubleX8# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatArrayAsFloatX16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, FloatX16# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleArrayAsDoubleX4# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, DoubleX4# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatArrayAsFloatX8# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, FloatX8# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleArrayAsDoubleX2# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, DoubleX2# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatArrayAsFloatX4# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, FloatX4# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64ArrayAsWord64X8# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word64X8# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32ArrayAsWord32X16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word32X16# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16ArrayAsWord16X32# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word16X32# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8ArrayAsWord8X64# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word8X64# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64ArrayAsWord64X4# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word64X4# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32ArrayAsWord32X8# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word32X8# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16ArrayAsWord16X16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word16X16# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8ArrayAsWord8X32# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word8X32# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64ArrayAsWord64X2# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word64X2# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32ArrayAsWord32X4# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word32X4# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16ArrayAsWord16X8# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word16X8# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8ArrayAsWord8X16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word8X16# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64ArrayAsInt64X8# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int64X8# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32ArrayAsInt32X16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int32X16# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16ArrayAsInt16X32# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int16X32# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8ArrayAsInt8X64# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int8X64# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64ArrayAsInt64X4# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int64X4# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32ArrayAsInt32X8# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int32X8# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16ArrayAsInt16X16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int16X16# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8ArrayAsInt8X32# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int8X32# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64ArrayAsInt64X2# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int64X2# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32ArrayAsInt32X4# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int32X4# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16ArrayAsInt16X8# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int16X8# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8ArrayAsInt8X16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int8X16# #) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM and can fail with an unchecked exception.

indexDoubleArrayAsDoubleX8# :: ByteArray# -> Int# -> DoubleX8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexFloatArrayAsFloatX16# :: ByteArray# -> Int# -> FloatX16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexDoubleArrayAsDoubleX4# :: ByteArray# -> Int# -> DoubleX4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexFloatArrayAsFloatX8# :: ByteArray# -> Int# -> FloatX8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexDoubleArrayAsDoubleX2# :: ByteArray# -> Int# -> DoubleX2# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexFloatArrayAsFloatX4# :: ByteArray# -> Int# -> FloatX4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord64ArrayAsWord64X8# :: ByteArray# -> Int# -> Word64X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord32ArrayAsWord32X16# :: ByteArray# -> Int# -> Word32X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord16ArrayAsWord16X32# :: ByteArray# -> Int# -> Word16X32# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord8ArrayAsWord8X64# :: ByteArray# -> Int# -> Word8X64# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord64ArrayAsWord64X4# :: ByteArray# -> Int# -> Word64X4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord32ArrayAsWord32X8# :: ByteArray# -> Int# -> Word32X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord16ArrayAsWord16X16# :: ByteArray# -> Int# -> Word16X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord8ArrayAsWord8X32# :: ByteArray# -> Int# -> Word8X32# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord64ArrayAsWord64X2# :: ByteArray# -> Int# -> Word64X2# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord32ArrayAsWord32X4# :: ByteArray# -> Int# -> Word32X4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord16ArrayAsWord16X8# :: ByteArray# -> Int# -> Word16X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexWord8ArrayAsWord8X16# :: ByteArray# -> Int# -> Word8X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt64ArrayAsInt64X8# :: ByteArray# -> Int# -> Int64X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt32ArrayAsInt32X16# :: ByteArray# -> Int# -> Int32X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt16ArrayAsInt16X32# :: ByteArray# -> Int# -> Int16X32# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt8ArrayAsInt8X64# :: ByteArray# -> Int# -> Int8X64# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt64ArrayAsInt64X4# :: ByteArray# -> Int# -> Int64X4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt32ArrayAsInt32X8# :: ByteArray# -> Int# -> Int32X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt16ArrayAsInt16X16# :: ByteArray# -> Int# -> Int16X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt8ArrayAsInt8X32# :: ByteArray# -> Int# -> Int8X32# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt64ArrayAsInt64X2# :: ByteArray# -> Int# -> Int64X2# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt32ArrayAsInt32X4# :: ByteArray# -> Int# -> Int32X4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt16ArrayAsInt16X8# :: ByteArray# -> Int# -> Int16X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

indexInt8ArrayAsInt8X16# :: ByteArray# -> Int# -> Int8X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

Warning: this is only available on LLVM.

writeDoubleX8OffAddr# :: Addr# -> Int# -> DoubleX8# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatX16OffAddr# :: Addr# -> Int# -> FloatX16# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeDoubleX4OffAddr# :: Addr# -> Int# -> DoubleX4# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatX8OffAddr# :: Addr# -> Int# -> FloatX8# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeDoubleX2OffAddr# :: Addr# -> Int# -> DoubleX2# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatX4OffAddr# :: Addr# -> Int# -> FloatX4# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64X8OffAddr# :: Addr# -> Int# -> Word64X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32X16OffAddr# :: Addr# -> Int# -> Word32X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16X32OffAddr# :: Addr# -> Int# -> Word16X32# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8X64OffAddr# :: Addr# -> Int# -> Word8X64# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64X4OffAddr# :: Addr# -> Int# -> Word64X4# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32X8OffAddr# :: Addr# -> Int# -> Word32X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16X16OffAddr# :: Addr# -> Int# -> Word16X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8X32OffAddr# :: Addr# -> Int# -> Word8X32# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64X2OffAddr# :: Addr# -> Int# -> Word64X2# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32X4OffAddr# :: Addr# -> Int# -> Word32X4# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16X8OffAddr# :: Addr# -> Int# -> Word16X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8X16OffAddr# :: Addr# -> Int# -> Word8X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64X8OffAddr# :: Addr# -> Int# -> Int64X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32X16OffAddr# :: Addr# -> Int# -> Int32X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16X32OffAddr# :: Addr# -> Int# -> Int16X32# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8X64OffAddr# :: Addr# -> Int# -> Int8X64# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64X4OffAddr# :: Addr# -> Int# -> Int64X4# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32X8OffAddr# :: Addr# -> Int# -> Int32X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16X16OffAddr# :: Addr# -> Int# -> Int16X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8X32OffAddr# :: Addr# -> Int# -> Int8X32# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64X2OffAddr# :: Addr# -> Int# -> Int64X2# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32X4OffAddr# :: Addr# -> Int# -> Int32X4# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16X8OffAddr# :: Addr# -> Int# -> Int16X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8X16OffAddr# :: Addr# -> Int# -> Int8X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleX8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, DoubleX8# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatX16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, FloatX16# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleX4OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, DoubleX4# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatX8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, FloatX8# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleX2OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, DoubleX2# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatX4OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, FloatX4# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64X8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word64X8# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32X16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word32X16# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16X32OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word16X32# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8X64OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word8X64# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64X4OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word64X4# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32X8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word32X8# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16X16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word16X16# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8X32OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word8X32# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64X2OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word64X2# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32X4OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word32X4# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16X8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word16X8# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8X16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word8X16# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64X8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int64X8# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32X16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int32X16# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16X32OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int16X32# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8X64OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int8X64# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64X4OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int64X4# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32X8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int32X8# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16X16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int16X16# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8X32OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int8X32# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64X2OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int64X2# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32X4OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int32X4# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16X8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int16X8# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8X16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int8X16# #) Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM and can fail with an unchecked exception.

indexDoubleX8OffAddr# :: Addr# -> Int# -> DoubleX8# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexFloatX16OffAddr# :: Addr# -> Int# -> FloatX16# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexDoubleX4OffAddr# :: Addr# -> Int# -> DoubleX4# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexFloatX8OffAddr# :: Addr# -> Int# -> FloatX8# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexDoubleX2OffAddr# :: Addr# -> Int# -> DoubleX2# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexFloatX4OffAddr# :: Addr# -> Int# -> FloatX4# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord64X8OffAddr# :: Addr# -> Int# -> Word64X8# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord32X16OffAddr# :: Addr# -> Int# -> Word32X16# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord16X32OffAddr# :: Addr# -> Int# -> Word16X32# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord8X64OffAddr# :: Addr# -> Int# -> Word8X64# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord64X4OffAddr# :: Addr# -> Int# -> Word64X4# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord32X8OffAddr# :: Addr# -> Int# -> Word32X8# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord16X16OffAddr# :: Addr# -> Int# -> Word16X16# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord8X32OffAddr# :: Addr# -> Int# -> Word8X32# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord64X2OffAddr# :: Addr# -> Int# -> Word64X2# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord32X4OffAddr# :: Addr# -> Int# -> Word32X4# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord16X8OffAddr# :: Addr# -> Int# -> Word16X8# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexWord8X16OffAddr# :: Addr# -> Int# -> Word8X16# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt64X8OffAddr# :: Addr# -> Int# -> Int64X8# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt32X16OffAddr# :: Addr# -> Int# -> Int32X16# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt16X32OffAddr# :: Addr# -> Int# -> Int16X32# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt8X64OffAddr# :: Addr# -> Int# -> Int8X64# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt64X4OffAddr# :: Addr# -> Int# -> Int64X4# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt32X8OffAddr# :: Addr# -> Int# -> Int32X8# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt16X16OffAddr# :: Addr# -> Int# -> Int16X16# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt8X32OffAddr# :: Addr# -> Int# -> Int8X32# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt64X2OffAddr# :: Addr# -> Int# -> Int64X2# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt32X4OffAddr# :: Addr# -> Int# -> Int32X4# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt16X8OffAddr# :: Addr# -> Int# -> Int16X8# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

indexInt8X16OffAddr# :: Addr# -> Int# -> Int8X16# Source #

Reads vector; offset in bytes.

Warning: this is only available on LLVM.

writeDoubleX8Array# :: MutableByteArray# d -> Int# -> DoubleX8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatX16Array# :: MutableByteArray# d -> Int# -> FloatX16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeDoubleX4Array# :: MutableByteArray# d -> Int# -> DoubleX4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatX8Array# :: MutableByteArray# d -> Int# -> FloatX8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeDoubleX2Array# :: MutableByteArray# d -> Int# -> DoubleX2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeFloatX4Array# :: MutableByteArray# d -> Int# -> FloatX4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64X8Array# :: MutableByteArray# d -> Int# -> Word64X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32X16Array# :: MutableByteArray# d -> Int# -> Word32X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16X32Array# :: MutableByteArray# d -> Int# -> Word16X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8X64Array# :: MutableByteArray# d -> Int# -> Word8X64# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64X4Array# :: MutableByteArray# d -> Int# -> Word64X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32X8Array# :: MutableByteArray# d -> Int# -> Word32X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16X16Array# :: MutableByteArray# d -> Int# -> Word16X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8X32Array# :: MutableByteArray# d -> Int# -> Word8X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord64X2Array# :: MutableByteArray# d -> Int# -> Word64X2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord32X4Array# :: MutableByteArray# d -> Int# -> Word32X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord16X8Array# :: MutableByteArray# d -> Int# -> Word16X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeWord8X16Array# :: MutableByteArray# d -> Int# -> Word8X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64X8Array# :: MutableByteArray# d -> Int# -> Int64X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32X16Array# :: MutableByteArray# d -> Int# -> Int32X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16X32Array# :: MutableByteArray# d -> Int# -> Int16X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8X64Array# :: MutableByteArray# d -> Int# -> Int8X64# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64X4Array# :: MutableByteArray# d -> Int# -> Int64X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32X8Array# :: MutableByteArray# d -> Int# -> Int32X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16X16Array# :: MutableByteArray# d -> Int# -> Int16X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8X32Array# :: MutableByteArray# d -> Int# -> Int8X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt64X2Array# :: MutableByteArray# d -> Int# -> Int64X2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt32X4Array# :: MutableByteArray# d -> Int# -> Int32X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt16X8Array# :: MutableByteArray# d -> Int# -> Int16X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

writeInt8X16Array# :: MutableByteArray# d -> Int# -> Int8X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleX8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, DoubleX8# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatX16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, FloatX16# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleX4Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, DoubleX4# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatX8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, FloatX8# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readDoubleX2Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, DoubleX2# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readFloatX4Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, FloatX4# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64X8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word64X8# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32X16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word32X16# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16X32Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word16X32# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8X64Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word8X64# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64X4Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word64X4# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32X8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word32X8# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16X16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word16X16# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8X32Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word8X32# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord64X2Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word64X2# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord32X4Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word32X4# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord16X8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word16X8# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readWord8X16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word8X16# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64X8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int64X8# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32X16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int32X16# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16X32Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int16X32# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8X64Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int8X64# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64X4Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int64X4# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32X8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int32X8# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16X16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int16X16# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8X32Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int8X32# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt64X2Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int64X2# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt32X4Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int32X4# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt16X8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int16X8# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

readInt8X16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int8X16# #) Source #

Read a vector from specified index of mutable array.

Warning: this is only available on LLVM and can fail with an unchecked exception.

indexDoubleX8Array# :: ByteArray# -> Int# -> DoubleX8# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexFloatX16Array# :: ByteArray# -> Int# -> FloatX16# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexDoubleX4Array# :: ByteArray# -> Int# -> DoubleX4# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexFloatX8Array# :: ByteArray# -> Int# -> FloatX8# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexDoubleX2Array# :: ByteArray# -> Int# -> DoubleX2# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexFloatX4Array# :: ByteArray# -> Int# -> FloatX4# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord64X8Array# :: ByteArray# -> Int# -> Word64X8# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord32X16Array# :: ByteArray# -> Int# -> Word32X16# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord16X32Array# :: ByteArray# -> Int# -> Word16X32# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord8X64Array# :: ByteArray# -> Int# -> Word8X64# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord64X4Array# :: ByteArray# -> Int# -> Word64X4# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord32X8Array# :: ByteArray# -> Int# -> Word32X8# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord16X16Array# :: ByteArray# -> Int# -> Word16X16# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord8X32Array# :: ByteArray# -> Int# -> Word8X32# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord64X2Array# :: ByteArray# -> Int# -> Word64X2# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord32X4Array# :: ByteArray# -> Int# -> Word32X4# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord16X8Array# :: ByteArray# -> Int# -> Word16X8# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexWord8X16Array# :: ByteArray# -> Int# -> Word8X16# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt64X8Array# :: ByteArray# -> Int# -> Int64X8# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt32X16Array# :: ByteArray# -> Int# -> Int32X16# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt16X32Array# :: ByteArray# -> Int# -> Int16X32# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt8X64Array# :: ByteArray# -> Int# -> Int8X64# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt64X4Array# :: ByteArray# -> Int# -> Int64X4# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt32X8Array# :: ByteArray# -> Int# -> Int32X8# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt16X16Array# :: ByteArray# -> Int# -> Int16X16# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt8X32Array# :: ByteArray# -> Int# -> Int8X32# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt64X2Array# :: ByteArray# -> Int# -> Int64X2# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt32X4Array# :: ByteArray# -> Int# -> Int32X4# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt16X8Array# :: ByteArray# -> Int# -> Int16X8# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

indexInt8X16Array# :: ByteArray# -> Int# -> Int8X16# Source #

Read a vector from specified index of immutable array.

Warning: this is only available on LLVM.

negateDoubleX8# :: DoubleX8# -> DoubleX8# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateFloatX16# :: FloatX16# -> FloatX16# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateDoubleX4# :: DoubleX4# -> DoubleX4# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateFloatX8# :: FloatX8# -> FloatX8# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateDoubleX2# :: DoubleX2# -> DoubleX2# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateFloatX4# :: FloatX4# -> FloatX4# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt64X8# :: Int64X8# -> Int64X8# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt32X16# :: Int32X16# -> Int32X16# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt16X32# :: Int16X32# -> Int16X32# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt8X64# :: Int8X64# -> Int8X64# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt64X4# :: Int64X4# -> Int64X4# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt32X8# :: Int32X8# -> Int32X8# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt16X16# :: Int16X16# -> Int16X16# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt8X32# :: Int8X32# -> Int8X32# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt64X2# :: Int64X2# -> Int64X2# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt32X4# :: Int32X4# -> Int32X4# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt16X8# :: Int16X8# -> Int16X8# Source #

Negate element-wise.

Warning: this is only available on LLVM.

negateInt8X16# :: Int8X16# -> Int8X16# Source #

Negate element-wise.

Warning: this is only available on LLVM.

remWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

remInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

Warning: this is only available on LLVM.

quotWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

quotInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Rounds towards zero element-wise.

Warning: this is only available on LLVM.

divideDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8# Source #

Divide two vectors element-wise.

Warning: this is only available on LLVM.

divideFloatX16# :: FloatX16# -> FloatX16# -> FloatX16# Source #

Divide two vectors element-wise.

Warning: this is only available on LLVM.

divideDoubleX4# :: DoubleX4# -> DoubleX4# -> DoubleX4# Source #

Divide two vectors element-wise.

Warning: this is only available on LLVM.

divideFloatX8# :: FloatX8# -> FloatX8# -> FloatX8# Source #

Divide two vectors element-wise.

Warning: this is only available on LLVM.

divideDoubleX2# :: DoubleX2# -> DoubleX2# -> DoubleX2# Source #

Divide two vectors element-wise.

Warning: this is only available on LLVM.

divideFloatX4# :: FloatX4# -> FloatX4# -> FloatX4# Source #

Divide two vectors element-wise.

Warning: this is only available on LLVM.

timesDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesFloatX16# :: FloatX16# -> FloatX16# -> FloatX16# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesDoubleX4# :: DoubleX4# -> DoubleX4# -> DoubleX4# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesFloatX8# :: FloatX8# -> FloatX8# -> FloatX8# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesDoubleX2# :: DoubleX2# -> DoubleX2# -> DoubleX2# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesFloatX4# :: FloatX4# -> FloatX4# -> FloatX4# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

timesInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Multiply two vectors element-wise.

Warning: this is only available on LLVM.

minusDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusFloatX16# :: FloatX16# -> FloatX16# -> FloatX16# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusDoubleX4# :: DoubleX4# -> DoubleX4# -> DoubleX4# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusFloatX8# :: FloatX8# -> FloatX8# -> FloatX8# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusDoubleX2# :: DoubleX2# -> DoubleX2# -> DoubleX2# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusFloatX4# :: FloatX4# -> FloatX4# -> FloatX4# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

minusInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Subtract two vectors element-wise.

Warning: this is only available on LLVM.

plusDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusFloatX16# :: FloatX16# -> FloatX16# -> FloatX16# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusDoubleX4# :: DoubleX4# -> DoubleX4# -> DoubleX4# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusFloatX8# :: FloatX8# -> FloatX8# -> FloatX8# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusDoubleX2# :: DoubleX2# -> DoubleX2# -> DoubleX2# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusFloatX4# :: FloatX4# -> FloatX4# -> FloatX4# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

plusInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Add two vectors element-wise.

Warning: this is only available on LLVM.

insertDoubleX8# :: DoubleX8# -> Double# -> Int# -> DoubleX8# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertFloatX16# :: FloatX16# -> Float# -> Int# -> FloatX16# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertDoubleX4# :: DoubleX4# -> Double# -> Int# -> DoubleX4# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertFloatX8# :: FloatX8# -> Float# -> Int# -> FloatX8# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertDoubleX2# :: DoubleX2# -> Double# -> Int# -> DoubleX2# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertFloatX4# :: FloatX4# -> Float# -> Int# -> FloatX4# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord64X8# :: Word64X8# -> Word64# -> Int# -> Word64X8# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord32X16# :: Word32X16# -> Word32# -> Int# -> Word32X16# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord16X32# :: Word16X32# -> Word16# -> Int# -> Word16X32# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord8X64# :: Word8X64# -> Word8# -> Int# -> Word8X64# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord64X4# :: Word64X4# -> Word64# -> Int# -> Word64X4# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord32X8# :: Word32X8# -> Word32# -> Int# -> Word32X8# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord16X16# :: Word16X16# -> Word16# -> Int# -> Word16X16# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord8X32# :: Word8X32# -> Word8# -> Int# -> Word8X32# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord64X2# :: Word64X2# -> Word64# -> Int# -> Word64X2# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord32X4# :: Word32X4# -> Word32# -> Int# -> Word32X4# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord16X8# :: Word16X8# -> Word16# -> Int# -> Word16X8# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertWord8X16# :: Word8X16# -> Word8# -> Int# -> Word8X16# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt64X8# :: Int64X8# -> Int64# -> Int# -> Int64X8# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt32X16# :: Int32X16# -> Int32# -> Int# -> Int32X16# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt16X32# :: Int16X32# -> Int16# -> Int# -> Int16X32# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt8X64# :: Int8X64# -> Int8# -> Int# -> Int8X64# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt64X4# :: Int64X4# -> Int64# -> Int# -> Int64X4# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt32X8# :: Int32X8# -> Int32# -> Int# -> Int32X8# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt16X16# :: Int16X16# -> Int16# -> Int# -> Int16X16# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt8X32# :: Int8X32# -> Int8# -> Int# -> Int8X32# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt64X2# :: Int64X2# -> Int64# -> Int# -> Int64X2# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt32X4# :: Int32X4# -> Int32# -> Int# -> Int32X4# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt16X8# :: Int16X8# -> Int16# -> Int# -> Int16X8# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

insertInt8X16# :: Int8X16# -> Int8# -> Int# -> Int8X16# Source #

Insert a scalar at the given position in a vector.

Warning: this is only available on LLVM.

unpackDoubleX8# :: DoubleX8# -> (# Double#, Double#, Double#, Double#, Double#, Double#, Double#, Double# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackFloatX16# :: FloatX16# -> (# Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackDoubleX4# :: DoubleX4# -> (# Double#, Double#, Double#, Double# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackFloatX8# :: FloatX8# -> (# Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackDoubleX2# :: DoubleX2# -> (# Double#, Double# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackFloatX4# :: FloatX4# -> (# Float#, Float#, Float#, Float# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord64X8# :: Word64X8# -> (# Word64#, Word64#, Word64#, Word64#, Word64#, Word64#, Word64#, Word64# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord32X16# :: Word32X16# -> (# Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord16X32# :: Word16X32# -> (# Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord64X4# :: Word64X4# -> (# Word64#, Word64#, Word64#, Word64# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord32X8# :: Word32X8# -> (# Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord16X16# :: Word16X16# -> (# Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord8X32# :: Word8X32# -> (# Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord64X2# :: Word64X2# -> (# Word64#, Word64# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord32X4# :: Word32X4# -> (# Word32#, Word32#, Word32#, Word32# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord16X8# :: Word16X8# -> (# Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackWord8X16# :: Word8X16# -> (# Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt64X8# :: Int64X8# -> (# Int64#, Int64#, Int64#, Int64#, Int64#, Int64#, Int64#, Int64# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt32X16# :: Int32X16# -> (# Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt16X32# :: Int16X32# -> (# Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt8X64# :: Int8X64# -> (# Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt64X4# :: Int64X4# -> (# Int64#, Int64#, Int64#, Int64# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt32X8# :: Int32X8# -> (# Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt16X16# :: Int16X16# -> (# Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt8X32# :: Int8X32# -> (# Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt64X2# :: Int64X2# -> (# Int64#, Int64# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt32X4# :: Int32X4# -> (# Int32#, Int32#, Int32#, Int32# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt16X8# :: Int16X8# -> (# Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

unpackInt8X16# :: Int8X16# -> (# Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8# #) Source #

Unpack the elements of a vector into an unboxed tuple. #

Warning: this is only available on LLVM.

packDoubleX8# :: (# Double#, Double#, Double#, Double#, Double#, Double#, Double#, Double# #) -> DoubleX8# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packFloatX16# :: (# Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float# #) -> FloatX16# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packDoubleX4# :: (# Double#, Double#, Double#, Double# #) -> DoubleX4# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packFloatX8# :: (# Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float# #) -> FloatX8# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packDoubleX2# :: (# Double#, Double# #) -> DoubleX2# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packFloatX4# :: (# Float#, Float#, Float#, Float# #) -> FloatX4# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord64X8# :: (# Word64#, Word64#, Word64#, Word64#, Word64#, Word64#, Word64#, Word64# #) -> Word64X8# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord32X16# :: (# Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32# #) -> Word32X16# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord16X32# :: (# Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16# #) -> Word16X32# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord64X4# :: (# Word64#, Word64#, Word64#, Word64# #) -> Word64X4# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord32X8# :: (# Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32#, Word32# #) -> Word32X8# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord16X16# :: (# Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16# #) -> Word16X16# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord8X32# :: (# Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8# #) -> Word8X32# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord64X2# :: (# Word64#, Word64# #) -> Word64X2# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord32X4# :: (# Word32#, Word32#, Word32#, Word32# #) -> Word32X4# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord16X8# :: (# Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16#, Word16# #) -> Word16X8# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packWord8X16# :: (# Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8#, Word8# #) -> Word8X16# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt64X8# :: (# Int64#, Int64#, Int64#, Int64#, Int64#, Int64#, Int64#, Int64# #) -> Int64X8# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt32X16# :: (# Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32# #) -> Int32X16# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt16X32# :: (# Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16# #) -> Int16X32# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt8X64# :: (# Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8# #) -> Int8X64# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt64X4# :: (# Int64#, Int64#, Int64#, Int64# #) -> Int64X4# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt32X8# :: (# Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32#, Int32# #) -> Int32X8# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt16X16# :: (# Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16# #) -> Int16X16# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt8X32# :: (# Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8# #) -> Int8X32# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt64X2# :: (# Int64#, Int64# #) -> Int64X2# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt32X4# :: (# Int32#, Int32#, Int32#, Int32# #) -> Int32X4# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt16X8# :: (# Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16#, Int16# #) -> Int16X8# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

packInt8X16# :: (# Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8#, Int8# #) -> Int8X16# Source #

Pack the elements of an unboxed tuple into a vector.

Warning: this is only available on LLVM.

broadcastDoubleX8# :: Double# -> DoubleX8# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastFloatX16# :: Float# -> FloatX16# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastDoubleX4# :: Double# -> DoubleX4# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastFloatX8# :: Float# -> FloatX8# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastDoubleX2# :: Double# -> DoubleX2# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastFloatX4# :: Float# -> FloatX4# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord64X8# :: Word64# -> Word64X8# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord32X16# :: Word32# -> Word32X16# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord16X32# :: Word16# -> Word16X32# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord8X64# :: Word8# -> Word8X64# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord64X4# :: Word64# -> Word64X4# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord32X8# :: Word32# -> Word32X8# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord16X16# :: Word16# -> Word16X16# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord8X32# :: Word8# -> Word8X32# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord64X2# :: Word64# -> Word64X2# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord32X4# :: Word32# -> Word32X4# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord16X8# :: Word16# -> Word16X8# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastWord8X16# :: Word8# -> Word8X16# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt64X8# :: Int64# -> Int64X8# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt32X16# :: Int32# -> Int32X16# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt16X32# :: Int16# -> Int16X32# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt8X64# :: Int8# -> Int8X64# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt64X4# :: Int64# -> Int64X4# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt32X8# :: Int32# -> Int32X8# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt16X16# :: Int16# -> Int16X16# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt8X32# :: Int8# -> Int8X32# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt64X2# :: Int64# -> Int64X2# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt32X4# :: Int32# -> Int32X4# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt16X8# :: Int16# -> Int16X8# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

broadcastInt8X16# :: Int8# -> Int8X16# Source #

Broadcast a scalar to all elements of a vector.

Warning: this is only available on LLVM.

setThreadAllocationCounter# :: Int64# -> State# RealWorld -> State# RealWorld Source #

Sets the allocation counter for the current thread to the given value.

traceMarker# :: Addr# -> State# d -> State# d Source #

Emits a marker event via the RTS tracing framework. The contents of the event is the zero-terminated byte string passed as the first argument. The event will be emitted either to the .eventlog file, or to stderr, depending on the runtime RTS flags.

traceBinaryEvent# :: Addr# -> Int# -> State# d -> State# d Source #

Emits an event via the RTS tracing framework. The contents of the event is the binary object passed as the first argument with the given length passed as the second argument. The event will be emitted to the .eventlog file.

traceEvent# :: Addr# -> State# d -> State# d Source #

Emits an event via the RTS tracing framework. The contents of the event is the zero-terminated byte string passed as the first argument. The event will be emitted either to the .eventlog file, or to stderr, depending on the runtime RTS flags.

clearCCS# :: (State# d -> (# State# d, a #)) -> State# d -> (# State# d, a #) Source #

Run the supplied IO action with an empty CCS. For example, this is used by the interpreter to run an interpreted computation without the call stack showing that it was invoked from GHC.

getCurrentCCS# :: a -> State# d -> (# State# d, Addr# #) Source #

Returns the current CostCentreStack (value is NULL if not profiling). Takes a dummy argument which can be used to avoid the call to getCurrentCCS# being floated out by the simplifier, which would result in an uninformative stack (CAF).

getCCSOf# :: a -> State# d -> (# State# d, Addr# #) Source #

getApStackVal# :: a -> Int# -> (# Int#, b #) Source #

closureSize# :: a -> Int# Source #

closureSize# closure returns the size of the given closure in machine words.

unpackClosure# :: a -> (# Addr#, ByteArray#, Array# b #) Source #

unpackClosure# closure copies the closure and pointers in the payload of the given closure into two new arrays, and returns a pointer to the first word of the closure's info table, a non-pointer array for the raw bytes of the closure, and a pointer array for the pointers in the payload.

newBCO# :: ByteArray# -> ByteArray# -> Array# a -> Int# -> ByteArray# -> State# d -> (# State# d, BCO #) Source #

newBCO# instrs lits ptrs arity bitmap creates a new bytecode object. The resulting object encodes a function of the given arity with the instructions encoded in instrs, and a static reference table usage bitmap given by bitmap.

mkApUpd0# :: BCO -> (# a #) Source #

Wrap a BCO in a AP_UPD thunk which will be updated with the value of the BCO when evaluated.

anyToAddr# :: a -> State# RealWorld -> (# State# RealWorld, Addr# #) Source #

Retrieve the address of any Haskell value. This is essentially an unsafeCoerce#, but if implemented as such the core lint pass complains and fails to compile. As a primop, it is opaque to core/stg, and only appears in cmm (where the copy propagation pass will get rid of it). Note that "a" must be a value, not a thunk! It's too late for strictness analysis to enforce this, so you're on your own to guarantee this. Also note that Addr# is not a GC pointer - up to you to guarantee that it does not become a dangling pointer immediately after you get it.

addrToAny# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). Addr# -> (# a #) Source #

Convert an Addr# to a followable Any type.

keepAlive# :: forall {l :: Levity} {r :: RuntimeRep} (a :: TYPE ('BoxedRep l)) d (b :: TYPE r). a -> State# d -> (State# d -> b) -> b Source #

keepAlive# x s k keeps the value x alive during the execution of the computation k.

Note that the result type here isn't quite as unrestricted as the polymorphic type might suggest; see the section "RuntimeRep polymorphism in continuation-style primops" for details.

numSparks# :: State# d -> (# State# d, Int# #) Source #

Returns the number of sparks in the local spark pool.

getSpark# :: State# d -> (# State# d, Int#, a #) Source #

seq# :: a -> State# d -> (# State# d, a #) Source #

spark# :: a -> State# d -> (# State# d, a #) Source #

par# :: a -> Int# Source #

reallyUnsafePtrEquality# :: forall {l :: Levity} {k :: Levity} (a :: TYPE ('BoxedRep l)) (b :: TYPE ('BoxedRep k)). a -> b -> Int# Source #

Returns 1# if the given pointers are equal and 0# otherwise.

compactSize# :: Compact# -> State# RealWorld -> (# State# RealWorld, Word# #) Source #

Return the total capacity (in bytes) of all the compact blocks in the CNF.

compactAddWithSharing# :: Compact# -> a -> State# RealWorld -> (# State# RealWorld, a #) Source #

Like compactAdd#, but retains sharing and cycles during compaction.

compactAdd# :: Compact# -> a -> State# RealWorld -> (# State# RealWorld, a #) Source #

Recursively add a closure and its transitive closure to a Compact# (a CNF), evaluating any unevaluated components at the same time. Note: compactAdd# is not thread-safe, so only one thread may call compactAdd# with a particular Compact# at any given time. The primop does not enforce any mutual exclusion; the caller is expected to arrange this.

compactFixupPointers# :: Addr# -> Addr# -> State# RealWorld -> (# State# RealWorld, Compact#, Addr# #) Source #

Given the pointer to the first block of a CNF and the address of the root object in the old address space, fix up the internal pointers inside the CNF to account for a different position in memory than when it was serialized. This method must be called exactly once after importing a serialized CNF. It returns the new CNF and the new adjusted root address.

compactAllocateBlock# :: Word# -> Addr# -> State# RealWorld -> (# State# RealWorld, Addr# #) Source #

Attempt to allocate a compact block with the capacity (in bytes) given by the first argument. The Addr# is a pointer to previous compact block of the CNF or nullAddr# to create a new CNF with a single compact block.

The resulting block is not known to the GC until compactFixupPointers# is called on it, and care must be taken so that the address does not escape or memory will be leaked.

compactGetNextBlock# :: Compact# -> Addr# -> State# RealWorld -> (# State# RealWorld, Addr#, Word# #) Source #

Given a CNF and the address of one its compact blocks, returns the next compact block and its utilized size, or nullAddr# if the argument was the last compact block in the CNF.

compactGetFirstBlock# :: Compact# -> State# RealWorld -> (# State# RealWorld, Addr#, Word# #) Source #

Returns the address and the utilized size (in bytes) of the first compact block of a CNF.

compactContainsAny# :: a -> State# RealWorld -> (# State# RealWorld, Int# #) Source #

Returns 1# if the object is in any CNF at all, 0# otherwise.

compactContains# :: Compact# -> a -> State# RealWorld -> (# State# RealWorld, Int# #) Source #

Returns 1# if the object is contained in the CNF, 0# otherwise.

compactResize# :: Compact# -> Word# -> State# RealWorld -> State# RealWorld Source #

Set the new allocation size of the CNF. This value (in bytes) determines the capacity of each compact block in the CNF. It does not retroactively affect existing compact blocks in the CNF.

compactNew# :: Word# -> State# RealWorld -> (# State# RealWorld, Compact# #) Source #

Create a new CNF with a single compact block. The argument is the capacity of the compact block (in bytes, not words). The capacity is rounded up to a multiple of the allocator block size and is capped to one mega block.

stableNameToInt# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). StableName# a -> Int# Source #

makeStableName# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). a -> State# RealWorld -> (# State# RealWorld, StableName# a #) Source #

eqStablePtr# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). StablePtr# a -> StablePtr# a -> Int# Source #

deRefStablePtr# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). StablePtr# a -> State# RealWorld -> (# State# RealWorld, a #) Source #

makeStablePtr# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). a -> State# RealWorld -> (# State# RealWorld, StablePtr# a #) Source #

touch# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. a -> State# d -> State# d Source #

finalizeWeak# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) b. Weak# a -> State# RealWorld -> (# State# RealWorld, Int#, State# RealWorld -> (# State# RealWorld, b #) #) Source #

Finalize a weak pointer. The return value is an unboxed tuple containing the new state of the world and an "unboxed Maybe", represented by an Int# and a (possibly invalid) finalization action. An Int# of 1 indicates that the finalizer is valid. The return value b from the finalizer should be ignored.

deRefWeak# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). Weak# a -> State# RealWorld -> (# State# RealWorld, Int#, a #) Source #

addCFinalizerToWeak# :: forall {k :: Levity} (b :: TYPE ('BoxedRep k)). Addr# -> Addr# -> Int# -> Addr# -> Weak# b -> State# RealWorld -> (# State# RealWorld, Int# #) Source #

addCFinalizerToWeak# fptr ptr flag eptr w attaches a C function pointer fptr to a weak pointer w as a finalizer. If flag is zero, fptr will be called with one argument, ptr. Otherwise, it will be called with two arguments, eptr and ptr. addCFinalizerToWeak# returns 1 on success, or 0 if w is already dead.

mkWeakNoFinalizer# :: forall {l :: Levity} {k :: Levity} (a :: TYPE ('BoxedRep l)) (b :: TYPE ('BoxedRep k)). a -> b -> State# RealWorld -> (# State# RealWorld, Weak# b #) Source #

mkWeak# :: forall {l :: Levity} {k :: Levity} (a :: TYPE ('BoxedRep l)) (b :: TYPE ('BoxedRep k)) c. a -> b -> (State# RealWorld -> (# State# RealWorld, c #)) -> State# RealWorld -> (# State# RealWorld, Weak# b #) Source #

mkWeak# k v finalizer s creates a weak reference to value k, with an associated reference to some value v. If k is still alive then v can be retrieved using deRefWeak#. Note that the type of k must be represented by a pointer (i.e. of kind TYPE 'LiftedRep or TYPE 'UnliftedRep@).

listThreads# :: State# RealWorld -> (# State# RealWorld, Array# ThreadId# #) Source #

Returns an array of the threads started by the program. Note that this threads which have finished execution may or may not be present in this list, depending upon whether they have been collected by the garbage collector.

Since: ghc-prim-0.10

threadStatus# :: ThreadId# -> State# RealWorld -> (# State# RealWorld, Int#, Int#, Int# #) Source #

Get the status of the given thread. Result is (ThreadStatus, Capability, Locked) where ThreadStatus is one of the status constants defined in rts/Constants.h, Capability is the number of the capability which currently owns the thread, and Locked is a boolean indicating whether the thread is bound to that capability.

Since: ghc-prim-0.9

threadLabel# :: ThreadId# -> State# RealWorld -> (# State# RealWorld, Int#, ByteArray# #) Source #

Get the label of the given thread. Morally of type ThreadId# -> IO (Maybe ByteArray#), with a 1# tag denoting Just.

Since: ghc-prim-0.10

labelThread# :: ThreadId# -> ByteArray# -> State# RealWorld -> State# RealWorld Source #

Set the label of the given thread. The ByteArray# should contain a UTF-8-encoded string.

forkOn# :: forall {q :: RuntimeRep} (a :: TYPE q). Int# -> (State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, ThreadId# #) Source #

fork# :: forall {q :: RuntimeRep} (a :: TYPE q). (State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, ThreadId# #) Source #

waitWrite# :: Int# -> State# d -> State# d Source #

Block until output is possible on specified file descriptor.

waitRead# :: Int# -> State# d -> State# d Source #

Block until input is available on specified file descriptor.

delay# :: Int# -> State# d -> State# d Source #

Sleep specified number of microseconds.

writeIOPort# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). IOPort# d a -> a -> State# d -> (# State# d, Int# #) Source #

If IOPort# is full, immediately return with integer 0, throwing an IOPortException. Otherwise, store value arg as 'IOPort#''s new contents, and return with integer 1.

readIOPort# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). IOPort# d a -> State# d -> (# State# d, a #) Source #

If IOPort# is empty, block until it becomes full. Then remove and return its contents, and set it empty. Throws an IOPortException if another thread is already waiting to read this IOPort#.

newIOPort# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). State# d -> (# State# d, IOPort# d a #) Source #

Create new IOPort#; initially empty.

isEmptyMVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MVar# d a -> State# d -> (# State# d, Int# #) Source #

Return 1 if MVar# is empty; 0 otherwise.

tryReadMVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MVar# d a -> State# d -> (# State# d, Int#, a #) Source #

If MVar# is empty, immediately return with integer 0 and value undefined. Otherwise, return with integer 1 and contents of MVar#.

readMVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MVar# d a -> State# d -> (# State# d, a #) Source #

If MVar# is empty, block until it becomes full. Then read its contents without modifying the MVar, without possibility of intervention from other threads.

tryPutMVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MVar# d a -> a -> State# d -> (# State# d, Int# #) Source #

If MVar# is full, immediately return with integer 0. Otherwise, store value arg as 'MVar#''s new contents, and return with integer 1.

putMVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MVar# d a -> a -> State# d -> State# d Source #

If MVar# is full, block until it becomes empty. Then store value arg as its new contents.

tryTakeMVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MVar# d a -> State# d -> (# State# d, Int#, a #) Source #

If MVar# is empty, immediately return with integer 0 and value undefined. Otherwise, return with integer 1 and contents of MVar#, and set MVar# empty.

takeMVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MVar# d a -> State# d -> (# State# d, a #) Source #

If MVar# is empty, block until it becomes full. Then remove and return its contents, and set it empty.

newMVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). State# d -> (# State# d, MVar# d a #) Source #

Create new MVar#; initially empty.

writeTVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). TVar# d a -> a -> State# d -> State# d Source #

Write contents of TVar#.

readTVarIO# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). TVar# d a -> State# d -> (# State# d, a #) Source #

Read contents of TVar# outside an STM transaction. Does not force evaluation of the result.

readTVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). TVar# d a -> State# d -> (# State# d, a #) Source #

Read contents of TVar# inside an STM transaction, i.e. within a call to atomically#. Does not force evaluation of the result.

newTVar# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. a -> State# d -> (# State# d, TVar# d a #) Source #

Create a new TVar# holding a specified initial value.

catchSTM# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) b. (State# RealWorld -> (# State# RealWorld, a #)) -> (b -> State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, a #) Source #

catchRetry# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). (State# RealWorld -> (# State# RealWorld, a #)) -> (State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, a #) Source #

retry# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). State# RealWorld -> (# State# RealWorld, a #) Source #

atomically# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). (State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, a #) Source #

control0# :: forall {r :: RuntimeRep} a (b :: TYPE r). PromptTag# a -> (((State# RealWorld -> (# State# RealWorld, b #)) -> State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, b #) Source #

See GHC.Prim.

Warning: this can fail with an unchecked exception.

unmaskAsyncExceptions# :: forall {q :: RuntimeRep} (a :: TYPE q). (State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, a #) Source #

unmaskAsyncUninterruptible# k s evaluates k s such that asynchronous exceptions are unmasked.

Note that the result type here isn't quite as unrestricted as the polymorphic type might suggest; see the section "RuntimeRep polymorphism in continuation-style primops" for details.

maskUninterruptible# :: forall {q :: RuntimeRep} (a :: TYPE q). (State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, a #) Source #

maskUninterruptible# k s evaluates k s such that asynchronous exceptions are deferred until after evaluation has finished.

Note that the result type here isn't quite as unrestricted as the polymorphic type might suggest; see the section "RuntimeRep polymorphism in continuation-style primops" for details.

maskAsyncExceptions# :: forall {q :: RuntimeRep} (a :: TYPE q). (State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, a #) Source #

maskAsyncExceptions# k s evaluates k s such that asynchronous exceptions are deferred until after evaluation has finished.

Note that the result type here isn't quite as unrestricted as the polymorphic type might suggest; see the section "RuntimeRep polymorphism in continuation-style primops" for details.

raiseIO# :: forall {l :: Levity} {r :: RuntimeRep} (a :: TYPE ('BoxedRep l)) (b :: TYPE r). a -> State# RealWorld -> (# State# RealWorld, b #) Source #

raiseDivZero# :: forall {r :: RuntimeRep} (b :: TYPE r). (# #) -> b Source #

raiseOverflow# :: forall {r :: RuntimeRep} (b :: TYPE r). (# #) -> b Source #

raiseUnderflow# :: forall {r :: RuntimeRep} (b :: TYPE r). (# #) -> b Source #

raise# :: forall {l :: Levity} {r :: RuntimeRep} (a :: TYPE ('BoxedRep l)) (b :: TYPE r). a -> b Source #

catch# :: forall {q :: RuntimeRep} {k :: Levity} (a :: TYPE q) (b :: TYPE ('BoxedRep k)). (State# RealWorld -> (# State# RealWorld, a #)) -> (b -> State# RealWorld -> (# State# RealWorld, a #)) -> State# RealWorld -> (# State# RealWorld, a #) Source #

catch# k handler s evaluates k s, invoking handler on any exceptions thrown.

Note that the result type here isn't quite as unrestricted as the polymorphic type might suggest; see the section "RuntimeRep polymorphism in continuation-style primops" for details.

casMutVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutVar# d a -> a -> a -> State# d -> (# State# d, Int#, a #) Source #

Compare-and-swap: perform a pointer equality test between the first value passed to this function and the value stored inside the MutVar#. If the pointers are equal, replace the stored value with the second value passed to this function, otherwise do nothing. Returns the final value stored inside the MutVar#. The Int# indicates whether a swap took place, with 1# meaning that we didn't swap, and 0# that we did. Implies a full memory barrier. Because the comparison is done on the level of pointers, all of the difficulties of using reallyUnsafePtrEquality# correctly apply to casMutVar# as well.

atomicModifyMutVar_# :: MutVar# d a -> (a -> a) -> State# d -> (# State# d, a, a #) Source #

Modify the contents of a MutVar#, returning the previous contents and the result of applying the given function to the previous contents.

atomicModifyMutVar2# :: MutVar# d a -> (a -> c) -> State# d -> (# State# d, a, c #) Source #

Modify the contents of a MutVar#, returning the previous contents x :: a and the result of applying the given function to the previous contents f x :: c.

The data type c (not a newtype!) must be a record whose first field is of lifted type a :: Type and is not unpacked. For example, product types c ~ Solo a or c ~ (a, b) work well. If the record type is both monomorphic and strict in its first field, it's recommended to mark the latter {-# NOUNPACK #-} explicitly.

Under the hood atomicModifyMutVar2# atomically replaces a pointer to an old x :: a with a pointer to a selector thunk fst r, where fst is a selector for the first field of the record and r is a function application thunk r = f x.

atomicModifyIORef2Native from atomic-modify-general package makes an effort to reflect restrictions on c faithfully, providing a well-typed high-level wrapper.

atomicSwapMutVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutVar# d a -> a -> State# d -> (# State# d, a #) Source #

Atomically exchange the value of a MutVar#.

writeMutVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutVar# d a -> a -> State# d -> State# d Source #

Write contents of MutVar#.

readMutVar# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutVar# d a -> State# d -> (# State# d, a #) Source #

Read contents of MutVar#. Result is not yet evaluated.

newMutVar# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. a -> State# d -> (# State# d, MutVar# d a #) Source #

Create MutVar# with specified initial value in specified state thread.

atomicWriteWordAddr# :: Addr# -> Word# -> State# d -> State# d Source #

Given an address, write a machine word. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicReadWordAddr# :: Addr# -> State# d -> (# State# d, Word# #) Source #

Given an address, read a machine word. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchXorWordAddr# :: Addr# -> Word# -> State# d -> (# State# d, Word# #) Source #

Given an address, and a value to XOR, atomically XOR the value into the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchOrWordAddr# :: Addr# -> Word# -> State# d -> (# State# d, Word# #) Source #

Given an address, and a value to OR, atomically OR the value into the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchNandWordAddr# :: Addr# -> Word# -> State# d -> (# State# d, Word# #) Source #

Given an address, and a value to NAND, atomically NAND the value into the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchAndWordAddr# :: Addr# -> Word# -> State# d -> (# State# d, Word# #) Source #

Given an address, and a value to AND, atomically AND the value into the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchSubWordAddr# :: Addr# -> Word# -> State# d -> (# State# d, Word# #) Source #

Given an address, and a value to subtract, atomically subtract the value from the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchAddWordAddr# :: Addr# -> Word# -> State# d -> (# State# d, Word# #) Source #

Given an address, and a value to add, atomically add the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicCasWord64Addr# :: Addr# -> Word64# -> Word64# -> State# d -> (# State# d, Word64# #) Source #

Compare and swap on a 64 bit-sized and aligned memory location.

Use as: s -> atomicCasWordAddr64# location expected desired s

This version always returns the old value read. This follows the normal protocol for CAS operations (and matches the underlying instruction on most architectures).

Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicCasWord32Addr# :: Addr# -> Word32# -> Word32# -> State# d -> (# State# d, Word32# #) Source #

Compare and swap on a 32 bit-sized and aligned memory location.

Use as: s -> atomicCasWordAddr32# location expected desired s

This version always returns the old value read. This follows the normal protocol for CAS operations (and matches the underlying instruction on most architectures).

Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicCasWord16Addr# :: Addr# -> Word16# -> Word16# -> State# d -> (# State# d, Word16# #) Source #

Compare and swap on a 16 bit-sized and aligned memory location.

Use as: s -> atomicCasWordAddr16# location expected desired s

This version always returns the old value read. This follows the normal protocol for CAS operations (and matches the underlying instruction on most architectures).

Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicCasWord8Addr# :: Addr# -> Word8# -> Word8# -> State# d -> (# State# d, Word8# #) Source #

Compare and swap on a 8 bit-sized and aligned memory location.

Use as: s -> atomicCasWordAddr8# location expected desired s

This version always returns the old value read. This follows the normal protocol for CAS operations (and matches the underlying instruction on most architectures).

Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicCasWordAddr# :: Addr# -> Word# -> Word# -> State# d -> (# State# d, Word# #) Source #

Compare and swap on a word-sized and aligned memory location.

Use as: s -> atomicCasWordAddr# location expected desired s

This version always returns the old value read. This follows the normal protocol for CAS operations (and matches the underlying instruction on most architectures).

Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicCasAddrAddr# :: Addr# -> Addr# -> Addr# -> State# d -> (# State# d, Addr# #) Source #

Compare and swap on a word-sized memory location.

Use as: s -> atomicCasAddrAddr# location expected desired s

This version always returns the old value read. This follows the normal protocol for CAS operations (and matches the underlying instruction on most architectures).

Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicExchangeWordAddr# :: Addr# -> Word# -> State# d -> (# State# d, Word# #) Source #

The atomic exchange operation. Atomically exchanges the value at the address with the given value. Returns the old value. Implies a read barrier.

Warning: this can fail with an unchecked exception.

atomicExchangeAddrAddr# :: Addr# -> Addr# -> State# d -> (# State# d, Addr# #) Source #

The atomic exchange operation. Atomically exchanges the value at the first address with the Addr# given as second argument. Implies a read barrier.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsWord64# :: Addr# -> Int# -> Word64# -> State# d -> State# d Source #

Write a 64-bit unsigned integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsInt64# :: Addr# -> Int# -> Int64# -> State# d -> State# d Source #

Write a 64-bit signed integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsWord32# :: Addr# -> Int# -> Word32# -> State# d -> State# d Source #

Write a 32-bit unsigned integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsInt32# :: Addr# -> Int# -> Int32# -> State# d -> State# d Source #

Write a 32-bit signed integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsWord16# :: Addr# -> Int# -> Word16# -> State# d -> State# d Source #

Write a 16-bit unsigned integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsInt16# :: Addr# -> Int# -> Int16# -> State# d -> State# d Source #

Write a 16-bit signed integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsStablePtr# :: Addr# -> Int# -> StablePtr# a -> State# d -> State# d Source #

Write a StablePtr# value to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsDouble# :: Addr# -> Int# -> Double# -> State# d -> State# d Source #

Write a double-precision floating-point value to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsFloat# :: Addr# -> Int# -> Float# -> State# d -> State# d Source #

Write a single-precision floating-point value to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsAddr# :: Addr# -> Int# -> Addr# -> State# d -> State# d Source #

Write a machine address to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsWord# :: Addr# -> Int# -> Word# -> State# d -> State# d Source #

Write a word-sized unsigned integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsInt# :: Addr# -> Int# -> Int# -> State# d -> State# d Source #

Write a word-sized integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsWideChar# :: Addr# -> Int# -> Char# -> State# d -> State# d Source #

Write a 32-bit character to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8OffAddrAsChar# :: Addr# -> Int# -> Char# -> State# d -> State# d Source #

Write an 8-bit character to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord64OffAddr# :: Addr# -> Int# -> Word64# -> State# d -> State# d Source #

Write a 64-bit unsigned integer to mutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeInt64OffAddr# :: Addr# -> Int# -> Int64# -> State# d -> State# d Source #

Write a 64-bit signed integer to mutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeWord32OffAddr# :: Addr# -> Int# -> Word32# -> State# d -> State# d Source #

Write a 32-bit unsigned integer to mutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeInt32OffAddr# :: Addr# -> Int# -> Int32# -> State# d -> State# d Source #

Write a 32-bit signed integer to mutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeWord16OffAddr# :: Addr# -> Int# -> Word16# -> State# d -> State# d Source #

Write a 16-bit unsigned integer to mutable address; offset in 2-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeInt16OffAddr# :: Addr# -> Int# -> Int16# -> State# d -> State# d Source #

Write a 16-bit signed integer to mutable address; offset in 2-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeWord8OffAddr# :: Addr# -> Int# -> Word8# -> State# d -> State# d Source #

Write an 8-bit unsigned integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeInt8OffAddr# :: Addr# -> Int# -> Int8# -> State# d -> State# d Source #

Write an 8-bit signed integer to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

writeStablePtrOffAddr# :: Addr# -> Int# -> StablePtr# a -> State# d -> State# d Source #

Write a StablePtr# value to mutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeDoubleOffAddr# :: Addr# -> Int# -> Double# -> State# d -> State# d Source #

Write a double-precision floating-point value to mutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeFloatOffAddr# :: Addr# -> Int# -> Float# -> State# d -> State# d Source #

Write a single-precision floating-point value to mutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeAddrOffAddr# :: Addr# -> Int# -> Addr# -> State# d -> State# d Source #

Write a machine address to mutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeWordOffAddr# :: Addr# -> Int# -> Word# -> State# d -> State# d Source #

Write a word-sized unsigned integer to mutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeIntOffAddr# :: Addr# -> Int# -> Int# -> State# d -> State# d Source #

Write a word-sized integer to mutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeWideCharOffAddr# :: Addr# -> Int# -> Char# -> State# d -> State# d Source #

Write a 32-bit character to mutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

writeCharOffAddr# :: Addr# -> Int# -> Char# -> State# d -> State# d Source #

Write an 8-bit character to mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsWord64# :: Addr# -> Int# -> State# d -> (# State# d, Word64# #) Source #

Read a 64-bit unsigned integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsInt64# :: Addr# -> Int# -> State# d -> (# State# d, Int64# #) Source #

Read a 64-bit signed integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsWord32# :: Addr# -> Int# -> State# d -> (# State# d, Word32# #) Source #

Read a 32-bit unsigned integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsInt32# :: Addr# -> Int# -> State# d -> (# State# d, Int32# #) Source #

Read a 32-bit signed integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsWord16# :: Addr# -> Int# -> State# d -> (# State# d, Word16# #) Source #

Read a 16-bit unsigned integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsInt16# :: Addr# -> Int# -> State# d -> (# State# d, Int16# #) Source #

Read a 16-bit signed integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsStablePtr# :: Addr# -> Int# -> State# d -> (# State# d, StablePtr# a #) Source #

Read a StablePtr# value from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsDouble# :: Addr# -> Int# -> State# d -> (# State# d, Double# #) Source #

Read a double-precision floating-point value from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsFloat# :: Addr# -> Int# -> State# d -> (# State# d, Float# #) Source #

Read a single-precision floating-point value from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsAddr# :: Addr# -> Int# -> State# d -> (# State# d, Addr# #) Source #

Read a machine address from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsWord# :: Addr# -> Int# -> State# d -> (# State# d, Word# #) Source #

Read a word-sized unsigned integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsInt# :: Addr# -> Int# -> State# d -> (# State# d, Int# #) Source #

Read a word-sized integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsWideChar# :: Addr# -> Int# -> State# d -> (# State# d, Char# #) Source #

Read a 32-bit character from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8OffAddrAsChar# :: Addr# -> Int# -> State# d -> (# State# d, Char# #) Source #

Read an 8-bit character from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord64OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word64# #) Source #

Read a 64-bit unsigned integer from mutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readInt64OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int64# #) Source #

Read a 64-bit signed integer from mutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readWord32OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word32# #) Source #

Read a 32-bit unsigned integer from mutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readInt32OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int32# #) Source #

Read a 32-bit signed integer from mutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readWord16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word16# #) Source #

Read a 16-bit unsigned integer from mutable address; offset in 2-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readInt16OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int16# #) Source #

Read a 16-bit signed integer from mutable address; offset in 2-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readWord8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word8# #) Source #

Read an 8-bit unsigned integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readInt8OffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int8# #) Source #

Read an 8-bit signed integer from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

readStablePtrOffAddr# :: Addr# -> Int# -> State# d -> (# State# d, StablePtr# a #) Source #

Read a StablePtr# value from mutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readDoubleOffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Double# #) Source #

Read a double-precision floating-point value from mutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readFloatOffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Float# #) Source #

Read a single-precision floating-point value from mutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readAddrOffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Addr# #) Source #

Read a machine address from mutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readWordOffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Word# #) Source #

Read a word-sized unsigned integer from mutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readIntOffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Int# #) Source #

Read a word-sized integer from mutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readWideCharOffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Char# #) Source #

Read a 32-bit character from mutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

Warning: this can fail with an unchecked exception.

readCharOffAddr# :: Addr# -> Int# -> State# d -> (# State# d, Char# #) Source #

Read an 8-bit character from mutable address; offset in bytes.

Warning: this can fail with an unchecked exception.

indexWord8OffAddrAsWord64# :: Addr# -> Int# -> Word64# Source #

Read a 64-bit unsigned integer from immutable address; offset in bytes.

indexWord8OffAddrAsInt64# :: Addr# -> Int# -> Int64# Source #

Read a 64-bit signed integer from immutable address; offset in bytes.

indexWord8OffAddrAsWord32# :: Addr# -> Int# -> Word32# Source #

Read a 32-bit unsigned integer from immutable address; offset in bytes.

indexWord8OffAddrAsInt32# :: Addr# -> Int# -> Int32# Source #

Read a 32-bit signed integer from immutable address; offset in bytes.

indexWord8OffAddrAsWord16# :: Addr# -> Int# -> Word16# Source #

Read a 16-bit unsigned integer from immutable address; offset in bytes.

indexWord8OffAddrAsInt16# :: Addr# -> Int# -> Int16# Source #

Read a 16-bit signed integer from immutable address; offset in bytes.

indexWord8OffAddrAsStablePtr# :: Addr# -> Int# -> StablePtr# a Source #

Read a StablePtr# value from immutable address; offset in bytes.

indexWord8OffAddrAsDouble# :: Addr# -> Int# -> Double# Source #

Read a double-precision floating-point value from immutable address; offset in bytes.

indexWord8OffAddrAsFloat# :: Addr# -> Int# -> Float# Source #

Read a single-precision floating-point value from immutable address; offset in bytes.

indexWord8OffAddrAsAddr# :: Addr# -> Int# -> Addr# Source #

Read a machine address from immutable address; offset in bytes.

indexWord8OffAddrAsWord# :: Addr# -> Int# -> Word# Source #

Read a word-sized unsigned integer from immutable address; offset in bytes.

indexWord8OffAddrAsInt# :: Addr# -> Int# -> Int# Source #

Read a word-sized integer from immutable address; offset in bytes.

indexWord8OffAddrAsWideChar# :: Addr# -> Int# -> Char# Source #

Read a 32-bit character from immutable address; offset in bytes.

indexWord8OffAddrAsChar# :: Addr# -> Int# -> Char# Source #

Read an 8-bit character from immutable address; offset in bytes.

indexWord64OffAddr# :: Addr# -> Int# -> Word64# Source #

Read a 64-bit unsigned integer from immutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexInt64OffAddr# :: Addr# -> Int# -> Int64# Source #

Read a 64-bit signed integer from immutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexWord32OffAddr# :: Addr# -> Int# -> Word32# Source #

Read a 32-bit unsigned integer from immutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexInt32OffAddr# :: Addr# -> Int# -> Int32# Source #

Read a 32-bit signed integer from immutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexWord16OffAddr# :: Addr# -> Int# -> Word16# Source #

Read a 16-bit unsigned integer from immutable address; offset in 2-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexInt16OffAddr# :: Addr# -> Int# -> Int16# Source #

Read a 16-bit signed integer from immutable address; offset in 2-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexWord8OffAddr# :: Addr# -> Int# -> Word8# Source #

Read an 8-bit unsigned integer from immutable address; offset in bytes.

indexInt8OffAddr# :: Addr# -> Int# -> Int8# Source #

Read an 8-bit signed integer from immutable address; offset in bytes.

indexStablePtrOffAddr# :: Addr# -> Int# -> StablePtr# a Source #

Read a StablePtr# value from immutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexDoubleOffAddr# :: Addr# -> Int# -> Double# Source #

Read a double-precision floating-point value from immutable address; offset in 8-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexFloatOffAddr# :: Addr# -> Int# -> Float# Source #

Read a single-precision floating-point value from immutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexAddrOffAddr# :: Addr# -> Int# -> Addr# Source #

Read a machine address from immutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexWordOffAddr# :: Addr# -> Int# -> Word# Source #

Read a word-sized unsigned integer from immutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexIntOffAddr# :: Addr# -> Int# -> Int# Source #

Read a word-sized integer from immutable address; offset in machine words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexWideCharOffAddr# :: Addr# -> Int# -> Char# Source #

Read a 32-bit character from immutable address; offset in 4-byte words.

On some platforms, the access may fail for an insufficiently aligned Addr#.

indexCharOffAddr# :: Addr# -> Int# -> Char# Source #

Read an 8-bit character from immutable address; offset in bytes.

int2Addr# :: Int# -> Addr# Source #

Coerce directly from int to address.

addr2Int# :: Addr# -> Int# Source #

Coerce directly from address to int.

remAddr# :: Addr# -> Int# -> Int# Source #

Return the remainder when the Addr# arg, treated like an Int#, is divided by the Int# arg.

minusAddr# :: Addr# -> Addr# -> Int# Source #

Result is meaningless if two Addr#s are so far apart that their difference doesn't fit in an Int#.

fetchXorIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (# State# d, Int# #) Source #

Given an array, and offset in machine words, and a value to XOR, atomically XOR the value into the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchOrIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (# State# d, Int# #) Source #

Given an array, and offset in machine words, and a value to OR, atomically OR the value into the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchNandIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (# State# d, Int# #) Source #

Given an array, and offset in machine words, and a value to NAND, atomically NAND the value into the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchAndIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (# State# d, Int# #) Source #

Given an array, and offset in machine words, and a value to AND, atomically AND the value into the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchSubIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (# State# d, Int# #) Source #

Given an array, and offset in machine words, and a value to subtract, atomically subtract the value from the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

fetchAddIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (# State# d, Int# #) Source #

Given an array, and offset in machine words, and a value to add, atomically add the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

casInt64Array# :: MutableByteArray# d -> Int# -> Int64# -> Int64# -> State# d -> (# State# d, Int64# #) Source #

Given an array, an offset in 64 bit units, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

casInt32Array# :: MutableByteArray# d -> Int# -> Int32# -> Int32# -> State# d -> (# State# d, Int32# #) Source #

Given an array, an offset in 32 bit units, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

casInt16Array# :: MutableByteArray# d -> Int# -> Int16# -> Int16# -> State# d -> (# State# d, Int16# #) Source #

Given an array, an offset in 16 bit units, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

casInt8Array# :: MutableByteArray# d -> Int# -> Int8# -> Int8# -> State# d -> (# State# d, Int8# #) Source #

Given an array, an offset in bytes, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

casIntArray# :: MutableByteArray# d -> Int# -> Int# -> Int# -> State# d -> (# State# d, Int# #) Source #

Given an array, an offset in machine words, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicWriteIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Given an array and an offset in machine words, write an element. The index is assumed to be in bounds. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

atomicReadIntArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int# #) Source #

Given an array and an offset in machine words, read an element. The index is assumed to be in bounds. Implies a full memory barrier.

Warning: this can fail with an unchecked exception.

setAddrRange# :: Addr# -> Int# -> Int# -> State# RealWorld -> State# RealWorld Source #

setAddrRange# dest len c sets all of the bytes in [dest, dest+len) to the value c.

Analogous to the standard C function memset, but with a different argument order.

Warning: this can fail with an unchecked exception.

Since: ghc-prim-0.11.0

setByteArray# :: MutableByteArray# d -> Int# -> Int# -> Int# -> State# d -> State# d Source #

setByteArray# ba off len c sets the byte range [off, off+len) of the MutableByteArray# to the byte c.

Warning: this can fail with an unchecked exception.

copyAddrToAddrNonOverlapping# :: Addr# -> Addr# -> Int# -> State# RealWorld -> State# RealWorld Source #

copyAddrToAddrNonOverlapping# src dest len copies len bytes from src to dest. As the name suggests, these two memory ranges must not overlap, although this pre-condition is not checked.

Analogous to the standard C function memcpy, but with a different argument order.

Warning: this can fail with an unchecked exception.

Since: ghc-prim-0.11.0

copyAddrToAddr# :: Addr# -> Addr# -> Int# -> State# RealWorld -> State# RealWorld Source #

copyAddrToAddr# src dest len copies len bytes from src to dest. These two memory ranges are allowed to overlap.

Analogous to the standard C function memmove, but with a different argument order.

Warning: this can fail with an unchecked exception.

Since: ghc-prim-0.11.0

copyAddrToByteArray# :: Addr# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Copy a memory range starting at the Addr# to the specified range in the MutableByteArray#. The memory region at Addr# and the ByteArray# must fully contain the specified ranges, but this is not checked. The Addr# must not point into the MutableByteArray# (e.g. if the MutableByteArray# were pinned), but this is not checked either.

Warning: this can fail with an unchecked exception.

copyMutableByteArrayToAddr# :: MutableByteArray# d -> Int# -> Addr# -> Int# -> State# d -> State# d Source #

Copy a range of the MutableByteArray# to the memory range starting at the Addr#. The MutableByteArray# and the memory region at Addr# must fully contain the specified ranges, but this is not checked. The Addr# must not point into the MutableByteArray# (e.g. if the MutableByteArray# were pinned), but this is not checked either.

Warning: this can fail with an unchecked exception.

copyByteArrayToAddr# :: ByteArray# -> Int# -> Addr# -> Int# -> State# d -> State# d Source #

Copy a range of the ByteArray# to the memory range starting at the Addr#. The ByteArray# and the memory region at Addr# must fully contain the specified ranges, but this is not checked. The Addr# must not point into the ByteArray# (e.g. if the ByteArray# were pinned), but this is not checked either.

Warning: this can fail with an unchecked exception.

copyMutableByteArrayNonOverlapping# :: MutableByteArray# d -> Int# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

copyMutableByteArrayNonOverlapping# src src_ofs dst dst_ofs len copies the range starting at offset src_ofs of length len from the MutableByteArray# src to the MutableByteArray# dst starting at offset dst_ofs. Both arrays must fully contain the specified ranges, but this is not checked. The regions are not allowed to overlap, but this is also not checked.

Warning: this can fail with an unchecked exception.

Since: ghc-prim-0.11.0

copyMutableByteArray# :: MutableByteArray# d -> Int# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

copyMutableByteArray# src src_ofs dst dst_ofs len copies the range starting at offset src_ofs of length len from the MutableByteArray# src to the MutableByteArray# dst starting at offset dst_ofs. Both arrays must fully contain the specified ranges, but this is not checked. The regions are allowed to overlap, although this is only possible when the same array is provided as both the source and the destination.

Warning: this can fail with an unchecked exception.

copyByteArray# :: ByteArray# -> Int# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

copyByteArray# src src_ofs dst dst_ofs len copies the range starting at offset src_ofs of length len from the ByteArray# src to the MutableByteArray# dst starting at offset dst_ofs. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

Warning: this can fail with an unchecked exception.

compareByteArrays# :: ByteArray# -> Int# -> ByteArray# -> Int# -> Int# -> Int# Source #

compareByteArrays# src1 src1_ofs src2 src2_ofs n compares n bytes starting at offset src1_ofs in the first ByteArray# src1 to the range of n bytes (i.e. same length) starting at offset src2_ofs of the second ByteArray# src2. Both arrays must fully contain the specified ranges, but this is not checked. Returns an Int# less than, equal to, or greater than zero if the range is found, respectively, to be byte-wise lexicographically less than, to match, or be greater than the second range.

Since: ghc-prim-0.5.2.0

writeWord8ArrayAsWord64# :: MutableByteArray# d -> Int# -> Word64# -> State# d -> State# d Source #

Write a 64-bit unsigned integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsInt64# :: MutableByteArray# d -> Int# -> Int64# -> State# d -> State# d Source #

Write a 64-bit signed integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsWord32# :: MutableByteArray# d -> Int# -> Word32# -> State# d -> State# d Source #

Write a 32-bit unsigned integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsInt32# :: MutableByteArray# d -> Int# -> Int32# -> State# d -> State# d Source #

Write a 32-bit signed integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsWord16# :: MutableByteArray# d -> Int# -> Word16# -> State# d -> State# d Source #

Write a 16-bit unsigned integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsInt16# :: MutableByteArray# d -> Int# -> Int16# -> State# d -> State# d Source #

Write a 16-bit signed integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsStablePtr# :: MutableByteArray# d -> Int# -> StablePtr# a -> State# d -> State# d Source #

Write a StablePtr# value to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsDouble# :: MutableByteArray# d -> Int# -> Double# -> State# d -> State# d Source #

Write a double-precision floating-point value to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsFloat# :: MutableByteArray# d -> Int# -> Float# -> State# d -> State# d Source #

Write a single-precision floating-point value to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsAddr# :: MutableByteArray# d -> Int# -> Addr# -> State# d -> State# d Source #

Write a machine address to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsWord# :: MutableByteArray# d -> Int# -> Word# -> State# d -> State# d Source #

Write a word-sized unsigned integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsInt# :: MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Write a word-sized integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsWideChar# :: MutableByteArray# d -> Int# -> Char# -> State# d -> State# d Source #

Write a 32-bit character to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord8ArrayAsChar# :: MutableByteArray# d -> Int# -> Char# -> State# d -> State# d Source #

Write an 8-bit character to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeWord64Array# :: MutableByteArray# d -> Int# -> Word64# -> State# d -> State# d Source #

Write a 64-bit unsigned integer to mutable array; offset in 8-byte words.

Warning: this can fail with an unchecked exception.

writeInt64Array# :: MutableByteArray# d -> Int# -> Int64# -> State# d -> State# d Source #

Write a 64-bit signed integer to mutable array; offset in 8-byte words.

Warning: this can fail with an unchecked exception.

writeWord32Array# :: MutableByteArray# d -> Int# -> Word32# -> State# d -> State# d Source #

Write a 32-bit unsigned integer to mutable array; offset in 4-byte words.

Warning: this can fail with an unchecked exception.

writeInt32Array# :: MutableByteArray# d -> Int# -> Int32# -> State# d -> State# d Source #

Write a 32-bit signed integer to mutable array; offset in 4-byte words.

Warning: this can fail with an unchecked exception.

writeWord16Array# :: MutableByteArray# d -> Int# -> Word16# -> State# d -> State# d Source #

Write a 16-bit unsigned integer to mutable array; offset in 2-byte words.

Warning: this can fail with an unchecked exception.

writeInt16Array# :: MutableByteArray# d -> Int# -> Int16# -> State# d -> State# d Source #

Write a 16-bit signed integer to mutable array; offset in 2-byte words.

Warning: this can fail with an unchecked exception.

writeWord8Array# :: MutableByteArray# d -> Int# -> Word8# -> State# d -> State# d Source #

Write an 8-bit unsigned integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeInt8Array# :: MutableByteArray# d -> Int# -> Int8# -> State# d -> State# d Source #

Write an 8-bit signed integer to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

writeStablePtrArray# :: MutableByteArray# d -> Int# -> StablePtr# a -> State# d -> State# d Source #

Write a StablePtr# value to mutable array; offset in machine words.

Warning: this can fail with an unchecked exception.

writeDoubleArray# :: MutableByteArray# d -> Int# -> Double# -> State# d -> State# d Source #

Write a double-precision floating-point value to mutable array; offset in 8-byte words.

Warning: this can fail with an unchecked exception.

writeFloatArray# :: MutableByteArray# d -> Int# -> Float# -> State# d -> State# d Source #

Write a single-precision floating-point value to mutable array; offset in 4-byte words.

Warning: this can fail with an unchecked exception.

writeAddrArray# :: MutableByteArray# d -> Int# -> Addr# -> State# d -> State# d Source #

Write a machine address to mutable array; offset in machine words.

Warning: this can fail with an unchecked exception.

writeWordArray# :: MutableByteArray# d -> Int# -> Word# -> State# d -> State# d Source #

Write a word-sized unsigned integer to mutable array; offset in machine words.

Warning: this can fail with an unchecked exception.

writeIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Write a word-sized integer to mutable array; offset in machine words.

Warning: this can fail with an unchecked exception.

writeWideCharArray# :: MutableByteArray# d -> Int# -> Char# -> State# d -> State# d Source #

Write a 32-bit character to mutable array; offset in 4-byte words.

Warning: this can fail with an unchecked exception.

writeCharArray# :: MutableByteArray# d -> Int# -> Char# -> State# d -> State# d Source #

Write an 8-bit character to mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsWord64# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word64# #) Source #

Read a 64-bit unsigned integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsInt64# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int64# #) Source #

Read a 64-bit signed integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsWord32# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word32# #) Source #

Read a 32-bit unsigned integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsInt32# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int32# #) Source #

Read a 32-bit signed integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsWord16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word16# #) Source #

Read a 16-bit unsigned integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsInt16# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int16# #) Source #

Read a 16-bit signed integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsStablePtr# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, StablePtr# a #) Source #

Read a StablePtr# value from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsDouble# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Double# #) Source #

Read a double-precision floating-point value from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsFloat# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Float# #) Source #

Read a single-precision floating-point value from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsAddr# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Addr# #) Source #

Read a machine address from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsWord# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word# #) Source #

Read a word-sized unsigned integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsInt# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int# #) Source #

Read a word-sized integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsWideChar# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Char# #) Source #

Read a 32-bit character from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord8ArrayAsChar# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Char# #) Source #

Read an 8-bit character from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readWord64Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word64# #) Source #

Read a 64-bit unsigned integer from mutable array; offset in 8-byte words.

Warning: this can fail with an unchecked exception.

readInt64Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int64# #) Source #

Read a 64-bit signed integer from mutable array; offset in 8-byte words.

Warning: this can fail with an unchecked exception.

readWord32Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word32# #) Source #

Read a 32-bit unsigned integer from mutable array; offset in 4-byte words.

Warning: this can fail with an unchecked exception.

readInt32Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int32# #) Source #

Read a 32-bit signed integer from mutable array; offset in 4-byte words.

Warning: this can fail with an unchecked exception.

readWord16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word16# #) Source #

Read a 16-bit unsigned integer from mutable array; offset in 2-byte words.

Warning: this can fail with an unchecked exception.

readInt16Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int16# #) Source #

Read a 16-bit signed integer from mutable array; offset in 2-byte words.

Warning: this can fail with an unchecked exception.

readWord8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word8# #) Source #

Read an 8-bit unsigned integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readInt8Array# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int8# #) Source #

Read an 8-bit signed integer from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

readStablePtrArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, StablePtr# a #) Source #

Read a StablePtr# value from mutable array; offset in machine words.

Warning: this can fail with an unchecked exception.

readDoubleArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Double# #) Source #

Read a double-precision floating-point value from mutable array; offset in 8-byte words.

Warning: this can fail with an unchecked exception.

readFloatArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Float# #) Source #

Read a single-precision floating-point value from mutable array; offset in 4-byte words.

Warning: this can fail with an unchecked exception.

readAddrArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Addr# #) Source #

Read a machine address from mutable array; offset in machine words.

Warning: this can fail with an unchecked exception.

readWordArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Word# #) Source #

Read a word-sized unsigned integer from mutable array; offset in machine words.

Warning: this can fail with an unchecked exception.

readIntArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Int# #) Source #

Read a word-sized integer from mutable array; offset in machine words.

Warning: this can fail with an unchecked exception.

readWideCharArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Char# #) Source #

Read a 32-bit character from mutable array; offset in 4-byte words.

Warning: this can fail with an unchecked exception.

readCharArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, Char# #) Source #

Read an 8-bit character from mutable array; offset in bytes.

Warning: this can fail with an unchecked exception.

indexWord8ArrayAsWord64# :: ByteArray# -> Int# -> Word64# Source #

Read a 64-bit unsigned integer from immutable array; offset in bytes.

indexWord8ArrayAsInt64# :: ByteArray# -> Int# -> Int64# Source #

Read a 64-bit signed integer from immutable array; offset in bytes.

indexWord8ArrayAsWord32# :: ByteArray# -> Int# -> Word32# Source #

Read a 32-bit unsigned integer from immutable array; offset in bytes.

indexWord8ArrayAsInt32# :: ByteArray# -> Int# -> Int32# Source #

Read a 32-bit signed integer from immutable array; offset in bytes.

indexWord8ArrayAsWord16# :: ByteArray# -> Int# -> Word16# Source #

Read a 16-bit unsigned integer from immutable array; offset in bytes.

indexWord8ArrayAsInt16# :: ByteArray# -> Int# -> Int16# Source #

Read a 16-bit signed integer from immutable array; offset in bytes.

indexWord8ArrayAsStablePtr# :: ByteArray# -> Int# -> StablePtr# a Source #

Read a StablePtr# value from immutable array; offset in bytes.

indexWord8ArrayAsDouble# :: ByteArray# -> Int# -> Double# Source #

Read a double-precision floating-point value from immutable array; offset in bytes.

indexWord8ArrayAsFloat# :: ByteArray# -> Int# -> Float# Source #

Read a single-precision floating-point value from immutable array; offset in bytes.

indexWord8ArrayAsAddr# :: ByteArray# -> Int# -> Addr# Source #

Read a machine address from immutable array; offset in bytes.

indexWord8ArrayAsWord# :: ByteArray# -> Int# -> Word# Source #

Read a word-sized unsigned integer from immutable array; offset in bytes.

indexWord8ArrayAsInt# :: ByteArray# -> Int# -> Int# Source #

Read a word-sized integer from immutable array; offset in bytes.

indexWord8ArrayAsWideChar# :: ByteArray# -> Int# -> Char# Source #

Read a 32-bit character from immutable array; offset in bytes.

indexWord8ArrayAsChar# :: ByteArray# -> Int# -> Char# Source #

Read an 8-bit character from immutable array; offset in bytes.

indexWord64Array# :: ByteArray# -> Int# -> Word64# Source #

Read a 64-bit unsigned integer from immutable array; offset in 8-byte words.

indexInt64Array# :: ByteArray# -> Int# -> Int64# Source #

Read a 64-bit signed integer from immutable array; offset in 8-byte words.

indexWord32Array# :: ByteArray# -> Int# -> Word32# Source #

Read a 32-bit unsigned integer from immutable array; offset in 4-byte words.

indexInt32Array# :: ByteArray# -> Int# -> Int32# Source #

Read a 32-bit signed integer from immutable array; offset in 4-byte words.

indexWord16Array# :: ByteArray# -> Int# -> Word16# Source #

Read a 16-bit unsigned integer from immutable array; offset in 2-byte words.

indexInt16Array# :: ByteArray# -> Int# -> Int16# Source #

Read a 16-bit signed integer from immutable array; offset in 2-byte words.

indexWord8Array# :: ByteArray# -> Int# -> Word8# Source #

Read an 8-bit unsigned integer from immutable array; offset in bytes.

indexInt8Array# :: ByteArray# -> Int# -> Int8# Source #

Read an 8-bit signed integer from immutable array; offset in bytes.

indexStablePtrArray# :: ByteArray# -> Int# -> StablePtr# a Source #

Read a StablePtr# value from immutable array; offset in machine words.

indexDoubleArray# :: ByteArray# -> Int# -> Double# Source #

Read a double-precision floating-point value from immutable array; offset in 8-byte words.

indexFloatArray# :: ByteArray# -> Int# -> Float# Source #

Read a single-precision floating-point value from immutable array; offset in 4-byte words.

indexAddrArray# :: ByteArray# -> Int# -> Addr# Source #

Read a machine address from immutable array; offset in machine words.

indexWordArray# :: ByteArray# -> Int# -> Word# Source #

Read a word-sized unsigned integer from immutable array; offset in machine words.

indexIntArray# :: ByteArray# -> Int# -> Int# Source #

Read a word-sized integer from immutable array; offset in machine words.

indexWideCharArray# :: ByteArray# -> Int# -> Char# Source #

Read a 32-bit character from immutable array; offset in 4-byte words.

indexCharArray# :: ByteArray# -> Int# -> Char# Source #

Read an 8-bit character from immutable array; offset in bytes.

getSizeofMutableByteArray# :: MutableByteArray# d -> State# d -> (# State# d, Int# #) Source #

Return the number of elements in the array, correctly accounting for the effect of shrinkMutableByteArray# and resizeMutableByteArray#.

Since: ghc-prim-0.5.0.0

sizeofMutableByteArray# :: MutableByteArray# d -> Int# Source #

Return the size of the array in bytes. Deprecated, it is unsafe in the presence of shrinkMutableByteArray# and resizeMutableByteArray# operations on the same mutable byte array.

sizeofByteArray# :: ByteArray# -> Int# Source #

Return the size of the array in bytes.

unsafeThawByteArray# :: ByteArray# -> State# d -> (# State# d, MutableByteArray# d #) Source #

Make an immutable byte array mutable, without copying.

Since: ghc-prim-0.12.0.0

unsafeFreezeByteArray# :: MutableByteArray# d -> State# d -> (# State# d, ByteArray# #) Source #

Make a mutable byte array immutable, without copying.

resizeMutableByteArray# :: MutableByteArray# d -> Int# -> State# d -> (# State# d, MutableByteArray# d #) Source #

Resize mutable byte array to new specified size (in bytes), shrinking or growing it. The returned MutableByteArray# is either the original MutableByteArray# resized in-place or, if not possible, a newly allocated (unpinned) MutableByteArray# (with the original content copied over).

To avoid undefined behaviour, the original MutableByteArray# shall not be accessed anymore after a resizeMutableByteArray# has been performed. Moreover, no reference to the old one should be kept in order to allow garbage collection of the original MutableByteArray# in case a new MutableByteArray# had to be allocated.

Since: ghc-prim-0.4.0.0

shrinkMutableByteArray# :: MutableByteArray# d -> Int# -> State# d -> State# d Source #

Shrink mutable byte array to new specified size (in bytes), in the specified state thread. The new size argument must be less than or equal to the current size as reported by getSizeofMutableByteArray#.

Assuming the non-profiling RTS, this primitive compiles to an O(1) operation in C--, modifying the array in-place. Backends bypassing C-- representation (such as JavaScript) might behave differently.

Warning: this can fail with an unchecked exception.

Since: ghc-prim-0.4.0.0

mutableByteArrayContents# :: MutableByteArray# d -> Addr# Source #

Intended for use with pinned arrays; otherwise very unsafe!

byteArrayContents# :: ByteArray# -> Addr# Source #

Intended for use with pinned arrays; otherwise very unsafe!

isByteArrayPinned# :: ByteArray# -> Int# Source #

Determine whether a ByteArray# is guaranteed not to move during GC.

isMutableByteArrayPinned# :: MutableByteArray# d -> Int# Source #

Determine whether a MutableByteArray# is guaranteed not to move during GC.

newAlignedPinnedByteArray# :: Int# -> Int# -> State# d -> (# State# d, MutableByteArray# d #) Source #

Like newPinnedByteArray# but allow specifying an arbitrary alignment, which must be a power of two.

Warning: this can fail with an unchecked exception.

newPinnedByteArray# :: Int# -> State# d -> (# State# d, MutableByteArray# d #) Source #

Like newByteArray# but GC guarantees not to move it.

newByteArray# :: Int# -> State# d -> (# State# d, MutableByteArray# d #) Source #

Create a new mutable byte array of specified size (in bytes), in the specified state thread. The size of the memory underlying the array will be rounded up to the platform's word size.

casSmallArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> Int# -> a -> a -> State# d -> (# State# d, Int#, a #) Source #

Unsafe, machine-level atomic compare and swap on an element within an array. See the documentation of casArray#.

Warning: this can fail with an unchecked exception.

thawSmallArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. SmallArray# a -> Int# -> Int# -> State# d -> (# State# d, SmallMutableArray# d a #) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

Warning: this can fail with an unchecked exception.

freezeSmallArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> Int# -> Int# -> State# d -> (# State# d, SmallArray# a #) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

Warning: this can fail with an unchecked exception.

cloneSmallMutableArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> Int# -> Int# -> State# d -> (# State# d, SmallMutableArray# d a #) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

Warning: this can fail with an unchecked exception.

cloneSmallArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). SmallArray# a -> Int# -> Int# -> SmallArray# a Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

Warning: this can fail with an unchecked exception.

copySmallMutableArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> Int# -> SmallMutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. The source and destination arrays can refer to the same array. Both arrays must fully contain the specified ranges, but this is not checked. The regions are allowed to overlap, although this is only possible when the same array is provided as both the source and the destination.

Warning: this can fail with an unchecked exception.

copySmallArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. SmallArray# a -> Int# -> SmallMutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

Warning: this can fail with an unchecked exception.

unsafeThawSmallArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. SmallArray# a -> State# d -> (# State# d, SmallMutableArray# d a #) Source #

Make an immutable array mutable, without copying.

unsafeFreezeSmallArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> State# d -> (# State# d, SmallArray# a #) Source #

Make a mutable array immutable, without copying.

indexSmallArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). SmallArray# a -> Int# -> (# a #) Source #

Read from specified index of immutable array. Result is packaged into an unboxed singleton; the result itself is not yet evaluated.

getSizeofSmallMutableArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> State# d -> (# State# d, Int# #) Source #

Return the number of elements in the array, correctly accounting for the effect of shrinkSmallMutableArray# and resizeSmallMutableArray#.

Since: ghc-prim-0.6.1

sizeofSmallMutableArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> Int# Source #

Return the number of elements in the array. Deprecated, it is unsafe in the presence of shrinkSmallMutableArray# and resizeSmallMutableArray# operations on the same small mutable array.

sizeofSmallArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). SmallArray# a -> Int# Source #

Return the number of elements in the array.

writeSmallArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> Int# -> a -> State# d -> State# d Source #

Write to specified index of mutable array.

Warning: this can fail with an unchecked exception.

readSmallArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> Int# -> State# d -> (# State# d, a #) Source #

Read from specified index of mutable array. Result is not yet evaluated.

Warning: this can fail with an unchecked exception.

shrinkSmallMutableArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). SmallMutableArray# d a -> Int# -> State# d -> State# d Source #

Shrink mutable array to new specified size, in the specified state thread. The new size argument must be less than or equal to the current size as reported by getSizeofSmallMutableArray#.

Assuming the non-profiling RTS, for the copying garbage collector (default) this primitive compiles to an O(1) operation in C--, modifying the array in-place. For the non-moving garbage collector, however, the time is proportional to the number of elements shrinked out. Backends bypassing C-- representation (such as JavaScript) might behave differently.

Warning: this can fail with an unchecked exception.

Since: ghc-prim-0.6.1

newSmallArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. Int# -> a -> State# d -> (# State# d, SmallMutableArray# d a #) Source #

Create a new mutable array with the specified number of elements, in the specified state thread, with each element containing the specified initial value.

casArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutableArray# d a -> Int# -> a -> a -> State# d -> (# State# d, Int#, a #) Source #

Given an array, an offset, the expected old value, and the new value, perform an atomic compare and swap (i.e. write the new value if the current value and the old value are the same pointer). Returns 0 if the swap succeeds and 1 if it fails. Additionally, returns the element at the offset after the operation completes. This means that on a success the new value is returned, and on a failure the actual old value (not the expected one) is returned. Implies a full memory barrier. The use of a pointer equality on a boxed value makes this function harder to use correctly than casIntArray#. All of the difficulties of using reallyUnsafePtrEquality# correctly apply to casArray# as well.

Warning: this can fail with an unchecked exception.

thawArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. Array# a -> Int# -> Int# -> State# d -> (# State# d, MutableArray# d a #) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

Warning: this can fail with an unchecked exception.

freezeArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutableArray# d a -> Int# -> Int# -> State# d -> (# State# d, Array# a #) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

Warning: this can fail with an unchecked exception.

cloneMutableArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutableArray# d a -> Int# -> Int# -> State# d -> (# State# d, MutableArray# d a #) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

Warning: this can fail with an unchecked exception.

cloneArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). Array# a -> Int# -> Int# -> Array# a Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

Warning: this can fail with an unchecked exception.

copyMutableArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutableArray# d a -> Int# -> MutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. In the case where the source and destination are the same array the source and destination regions may overlap.

Warning: this can fail with an unchecked exception.

copyArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. Array# a -> Int# -> MutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

Warning: this can fail with an unchecked exception.

unsafeThawArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. Array# a -> State# d -> (# State# d, MutableArray# d a #) Source #

Make an immutable array mutable, without copying.

unsafeFreezeArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutableArray# d a -> State# d -> (# State# d, Array# a #) Source #

Make a mutable array immutable, without copying.

indexArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). Array# a -> Int# -> (# a #) Source #

Read from the specified index of an immutable array. The result is packaged into an unboxed unary tuple; the result itself is not yet evaluated. Pattern matching on the tuple forces the indexing of the array to happen but does not evaluate the element itself. Evaluating the thunk prevents additional thunks from building up on the heap. Avoiding these thunks, in turn, reduces references to the argument array, allowing it to be garbage collected more promptly.

sizeofMutableArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutableArray# d a -> Int# Source #

Return the number of elements in the array.

sizeofArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). Array# a -> Int# Source #

Return the number of elements in the array.

writeArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutableArray# d a -> Int# -> a -> State# d -> State# d Source #

Write to specified index of mutable array.

Warning: this can fail with an unchecked exception.

readArray# :: forall {l :: Levity} d (a :: TYPE ('BoxedRep l)). MutableArray# d a -> Int# -> State# d -> (# State# d, a #) Source #

Read from specified index of mutable array. Result is not yet evaluated.

Warning: this can fail with an unchecked exception.

newArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)) d. Int# -> a -> State# d -> (# State# d, MutableArray# d a #) Source #

Create a new mutable array with the specified number of elements, in the specified state thread, with each element containing the specified initial value.

fnmsubDouble# :: Double# -> Double# -> Double# -> Double# Source #

Fused negate-multiply-subtract operation -x*y-z. See GHC.Prim.

fnmaddDouble# :: Double# -> Double# -> Double# -> Double# Source #

Fused negate-multiply-add operation -x*y+z. See GHC.Prim.

fmsubDouble# :: Double# -> Double# -> Double# -> Double# Source #

Fused multiply-subtract operation x*y-z. See GHC.Prim.

fmaddDouble# :: Double# -> Double# -> Double# -> Double# Source #

Fused multiply-add operation x*y+z. See GHC.Prim.

fnmsubFloat# :: Float# -> Float# -> Float# -> Float# Source #

Fused negate-multiply-subtract operation -x*y-z. See GHC.Prim.

fnmaddFloat# :: Float# -> Float# -> Float# -> Float# Source #

Fused negate-multiply-add operation -x*y+z. See GHC.Prim.

fmsubFloat# :: Float# -> Float# -> Float# -> Float# Source #

Fused multiply-subtract operation x*y-z. See GHC.Prim.

fmaddFloat# :: Float# -> Float# -> Float# -> Float# Source #

Fused multiply-add operation x*y+z. See GHC.Prim.

decodeFloat_Int# :: Float# -> (# Int#, Int# #) Source #

Convert to integers. First Int# in result is the mantissa; second is the exponent.

float2Int# :: Float# -> Int# Source #

Truncates a Float# value to the nearest Int#. Results are undefined if the truncation if truncation yields a value outside the range of Int#.

decodeDouble_Int64# :: Double# -> (# Int64#, Int# #) Source #

Decode Double# into mantissa and base-2 exponent.

decodeDouble_2Int# :: Double# -> (# Int#, Word#, Word#, Int# #) Source #

Convert to integer. First component of the result is -1 or 1, indicating the sign of the mantissa. The next two are the high and low 32 bits of the mantissa respectively, and the last is the exponent.

(**##) :: Double# -> Double# -> Double# Source #

Exponentiation.

double2Int# :: Double# -> Int# Source #

Truncates a Double# value to the nearest Int#. Results are undefined if the truncation if truncation yields a value outside the range of Int#.

(/##) :: Double# -> Double# -> Double# infixl 7 Source #

(*##) :: Double# -> Double# -> Double# infixl 7 Source #

(-##) :: Double# -> Double# -> Double# infixl 6 Source #

(+##) :: Double# -> Double# -> Double# infixl 6 Source #

(<=##) :: Double# -> Double# -> Int# infix 4 Source #

(<##) :: Double# -> Double# -> Int# infix 4 Source #

(/=##) :: Double# -> Double# -> Int# infix 4 Source #

(==##) :: Double# -> Double# -> Int# infix 4 Source #

(>=##) :: Double# -> Double# -> Int# infix 4 Source #

(>##) :: Double# -> Double# -> Int# infix 4 Source #

bitReverse# :: Word# -> Word# Source #

Reverse the order of the bits in a word.

bitReverse64# :: Word64# -> Word64# Source #

Reverse the order of the bits in a 64-bit word.

bitReverse32# :: Word# -> Word# Source #

Reverse the order of the bits in a 32-bit word.

bitReverse16# :: Word# -> Word# Source #

Reverse the order of the bits in a 16-bit word.

bitReverse8# :: Word# -> Word# Source #

Reverse the order of the bits in a 8-bit word.

byteSwap# :: Word# -> Word# Source #

Swap bytes in a word.

byteSwap64# :: Word64# -> Word64# Source #

Swap bytes in a 64 bits of a word.

byteSwap32# :: Word# -> Word# Source #

Swap bytes in the lower 32 bits of a word. The higher bytes are undefined.

byteSwap16# :: Word# -> Word# Source #

Swap bytes in the lower 16 bits of a word. The higher bytes are undefined.

ctz# :: Word# -> Word# Source #

Count trailing zeros in a word.

ctz64# :: Word64# -> Word# Source #

Count trailing zeros in a 64-bit word.

ctz32# :: Word# -> Word# Source #

Count trailing zeros in the lower 32 bits of a word.

ctz16# :: Word# -> Word# Source #

Count trailing zeros in the lower 16 bits of a word.

ctz8# :: Word# -> Word# Source #

Count trailing zeros in the lower 8 bits of a word.

clz# :: Word# -> Word# Source #

Count leading zeros in a word.

clz64# :: Word64# -> Word# Source #

Count leading zeros in a 64-bit word.

clz32# :: Word# -> Word# Source #

Count leading zeros in the lower 32 bits of a word.

clz16# :: Word# -> Word# Source #

Count leading zeros in the lower 16 bits of a word.

clz8# :: Word# -> Word# Source #

Count leading zeros in the lower 8 bits of a word.

pext# :: Word# -> Word# -> Word# Source #

Extract bits from a word at locations specified by a mask, aka parallel bit extract.

Software emulation:

pext :: Word -> Word -> Word
pext src mask = loop 0 0 0
  where
    loop i count result
      | i >= finiteBitSize (0 :: Word)
      = result
      | testBit mask i
      = loop (i + 1) (count + 1) (if testBit src i then setBit result count else result)
      | otherwise
      = loop (i + 1) count result

Since: ghc-prim-0.5.2.0

pext64# :: Word64# -> Word64# -> Word64# Source #

Extract bits from a word at locations specified by a mask.

Since: ghc-prim-0.5.2.0

pext32# :: Word# -> Word# -> Word# Source #

Extract bits from lower 32 bits of a word at locations specified by a mask.

Since: ghc-prim-0.5.2.0

pext16# :: Word# -> Word# -> Word# Source #

Extract bits from lower 16 bits of a word at locations specified by a mask.

Since: ghc-prim-0.5.2.0

pext8# :: Word# -> Word# -> Word# Source #

Extract bits from lower 8 bits of a word at locations specified by a mask.

Since: ghc-prim-0.5.2.0

pdep# :: Word# -> Word# -> Word# Source #

Deposit bits to a word at locations specified by a mask, aka parallel bit deposit.

Software emulation:

pdep :: Word -> Word -> Word
pdep src mask = go 0 src mask
  where
    go :: Word -> Word -> Word -> Word
    go result _ 0 = result
    go result src mask = go newResult newSrc newMask
      where
        maskCtz   = countTrailingZeros mask
        newResult = if testBit src 0 then setBit result maskCtz else result
        newSrc    = src `shiftR` 1
        newMask   = clearBit mask maskCtz

Since: ghc-prim-0.5.2.0

pdep64# :: Word64# -> Word64# -> Word64# Source #

Deposit bits to a word at locations specified by a mask.

Since: ghc-prim-0.5.2.0

pdep32# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 32 bits of a word at locations specified by a mask.

Since: ghc-prim-0.5.2.0

pdep16# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 16 bits of a word at locations specified by a mask.

Since: ghc-prim-0.5.2.0

pdep8# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 8 bits of a word at locations specified by a mask.

Since: ghc-prim-0.5.2.0

popCnt# :: Word# -> Word# Source #

Count the number of set bits in a word.

popCnt64# :: Word64# -> Word# Source #

Count the number of set bits in a 64-bit word.

popCnt32# :: Word# -> Word# Source #

Count the number of set bits in the lower 32 bits of a word.

popCnt16# :: Word# -> Word# Source #

Count the number of set bits in the lower 16 bits of a word.

popCnt8# :: Word# -> Word# Source #

Count the number of set bits in the lower 8 bits of a word.

uncheckedShiftRL# :: Word# -> Int# -> Word# Source #

Shift right logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedShiftL# :: Word# -> Int# -> Word# Source #

Shift left logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

quotRemWord2# :: Word# -> Word# -> Word# -> (# Word#, Word# #) Source #

Takes high word of dividend, then low word of dividend, then divisor. Requires that high word < divisor.

plusWord2# :: Word# -> Word# -> (# Word#, Word# #) Source #

Add unsigned integers, with the high part (carry) in the first component of the returned pair and the low part in the second component of the pair. See also addWordC#.

subWordC# :: Word# -> Word# -> (# Word#, Int# #) Source #

Subtract unsigned integers reporting overflow. The first element of the pair is the result. The second element is the carry flag, which is nonzero on overflow.

addWordC# :: Word# -> Word# -> (# Word#, Int# #) Source #

Add unsigned integers reporting overflow. The first element of the pair is the result. The second element is the carry flag, which is nonzero on overflow. See also plusWord2#.

uncheckedIShiftRL# :: Int# -> Int# -> Int# Source #

Shift right logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedIShiftRA# :: Int# -> Int# -> Int# Source #

Shift right arithmetic. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedIShiftL# :: Int# -> Int# -> Int# Source #

Shift left. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

word2Double# :: Word# -> Double# Source #

Convert an Word# to the corresponding Double# with the same integral value (up to truncation due to floating-point precision). e.g. word2Double# 1## == 1.0##

word2Float# :: Word# -> Float# Source #

Convert an Word# to the corresponding Float# with the same integral value (up to truncation due to floating-point precision). e.g. word2Float# 1## == 1.0#

int2Double# :: Int# -> Double# Source #

Convert an Int# to the corresponding Double# with the same integral value (up to truncation due to floating-point precision). e.g. int2Double# 1# == 1.0##

int2Float# :: Int# -> Float# Source #

Convert an Int# to the corresponding Float# with the same integral value (up to truncation due to floating-point precision). e.g. int2Float# 1# == 1.0#

(<=#) :: Int# -> Int# -> Int# infix 4 Source #

(<#) :: Int# -> Int# -> Int# infix 4 Source #

(/=#) :: Int# -> Int# -> Int# infix 4 Source #

(==#) :: Int# -> Int# -> Int# infix 4 Source #

(>=#) :: Int# -> Int# -> Int# infix 4 Source #

(>#) :: Int# -> Int# -> Int# infix 4 Source #

subIntC# :: Int# -> Int# -> (# Int#, Int# #) Source #

Subtract signed integers reporting overflow. First member of result is the difference truncated to an Int#; second member is zero if the true difference fits in an Int#, nonzero if overflow occurred (the difference is either too large or too small to fit in an Int#).

addIntC# :: Int# -> Int# -> (# Int#, Int# #) Source #

Add signed integers reporting overflow. First member of result is the sum truncated to an Int#; second member is zero if the true sum fits in an Int#, nonzero if overflow occurred (the sum is either too large or too small to fit in an Int#).

negateInt# :: Int# -> Int# Source #

Unary negation. Since the negative Int# range extends one further than the positive range, negateInt# of the most negative number is an identity operation. This way, negateInt# is always its own inverse.

notI# :: Int# -> Int# Source #

Bitwise "not", also known as the binary complement.

xorI# :: Int# -> Int# -> Int# Source #

Bitwise "xor".

orI# :: Int# -> Int# -> Int# Source #

Bitwise "or".

andI# :: Int# -> Int# -> Int# Source #

Bitwise "and".

quotRemInt# :: Int# -> Int# -> (# Int#, Int# #) Source #

Rounds towards zero.

remInt# :: Int# -> Int# -> Int# Source #

Satisfies (quotInt# x y) *# y +# (remInt# x y) == x. The behavior is undefined if the second argument is zero.

quotInt# :: Int# -> Int# -> Int# Source #

Rounds towards zero. The behavior is undefined if the second argument is zero.

mulIntMayOflo# :: Int# -> Int# -> Int# Source #

Return non-zero if there is any possibility that the upper word of a signed integer multiply might contain useful information. Return zero only if you are completely sure that no overflow can occur. On a 32-bit platform, the recommended implementation is to do a 32 x 32 -> 64 signed multiply, and subtract result[63:32] from (result[31] >>signed 31). If this is zero, meaning that the upper word is merely a sign extension of the lower one, no overflow can occur.

On a 64-bit platform it is not always possible to acquire the top 64 bits of the result. Therefore, a recommended implementation is to take the absolute value of both operands, and return 0 iff bits[63:31] of them are zero, since that means that their magnitudes fit within 31 bits, so the magnitude of the product must fit into 62 bits.

If in doubt, return non-zero, but do make an effort to create the correct answer for small args, since otherwise the performance of (*) :: Integer -> Integer -> Integer will be poor.

timesInt2# :: Int# -> Int# -> (# Int#, Int#, Int# #) Source #

Return a triple (isHighNeeded,high,low) where high and low are respectively the high and low bits of the double-word result. isHighNeeded is a cheap way to test if the high word is a sign-extension of the low word (isHighNeeded = 0#) or not (isHighNeeded = 1#).

(*#) :: Int# -> Int# -> Int# infixl 7 Source #

Low word of signed integer multiply.

(-#) :: Int# -> Int# -> Int# infixl 6 Source #

(+#) :: Int# -> Int# -> Int# infixl 6 Source #

rightSection :: forall {q :: RuntimeRep} {r :: RuntimeRep} {s :: RuntimeRep} {n :: Multiplicity} {o :: Multiplicity} (a :: TYPE q) (b :: TYPE r) (c :: TYPE s). (a %n -> b %o -> c) -> b %o -> a %n -> c Source #

leftSection :: forall {q :: RuntimeRep} {r :: RuntimeRep} {n :: Multiplicity} (a :: TYPE q) (b :: TYPE r). (a %n -> b) -> a %n -> b Source #

proxy# :: forall {k} (a :: k). Proxy# a Source #

Witness for an unboxed Proxy# value, which has no runtime representation.

seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b infixr 0 Source #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. In other words, it evaluates the first argument a to weak head normal form (WHNF). seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

nullAddr# :: Addr# Source #

The null address.

void# :: (# #) Source #

This is an alias for the unboxed unit tuple constructor. In earlier versions of GHC, void# was a value of the primitive type Void#, which is now defined to be (# #).

realWorld# :: State# RealWorld Source #

The token used in the implementation of the IO monad as a state monad. It does not pass any information at runtime. See also runRW#.

Running RealWorld state thread

runRW# :: forall (r :: RuntimeRep) (o :: TYPE r). (State# RealWorld -> o) -> o Source #

Apply a function to a State# RealWorld token. When manually applying a function to realWorld#, it is necessary to use NOINLINE to prevent semantically undesirable floating. runRW# is inlined, but only very late in compilation after all floating is complete.

Bit shift operations

shiftL# :: Word# -> Int# -> Word# Source #

Shift the argument left by the specified number of bits (which must be non-negative).

shiftRL# :: Word# -> Int# -> Word# Source #

Shift the argument right by the specified number of bits (which must be non-negative). The RL means "right, logical" (as opposed to RA for arithmetic) (although an arithmetic right shift wouldn't make sense for Word#)

iShiftL# :: Int# -> Int# -> Int# Source #

Shift the argument left by the specified number of bits (which must be non-negative).

iShiftRA# :: Int# -> Int# -> Int# Source #

Shift the argument right (signed) by the specified number of bits (which must be non-negative). The RA means "right, arithmetic" (as opposed to RL for logical)

iShiftRL# :: Int# -> Int# -> Int# Source #

Shift the argument right (unsigned) by the specified number of bits (which must be non-negative). The RL means "right, logical" (as opposed to RA for arithmetic)

Pointer comparison operations

reallyUnsafePtrEquality :: a -> a -> Int# Source #

Compare the underlying pointers of two values for equality.

Returns 1 if the pointers are equal and 0 otherwise.

The two values must be of the same type, of kind Type. See also reallyUnsafePtrEquality#, which doesn't have such restrictions.

unsafePtrEquality# :: forall (a :: UnliftedType) (b :: UnliftedType). a -> b -> Int# Source #

Compare the underlying pointers of two unlifted values for equality.

This is less dangerous than reallyUnsafePtrEquality, since the arguments are guaranteed to be evaluated. This means there is no risk of accidentally comparing a thunk. It's however still more dangerous than e.g. sameArray#.

eqStableName# :: forall {k :: Levity} {l :: Levity} (a :: TYPE ('BoxedRep k)) (b :: TYPE ('BoxedRep l)). StableName# a -> StableName# b -> Int# Source #

Compare two stable names for equality.

sameArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). Array# a -> Array# a -> Int# Source #

Compare the underlying pointers of two arrays.

sameMutableArray# :: forall {l :: Levity} s (a :: TYPE ('BoxedRep l)). MutableArray# s a -> MutableArray# s a -> Int# Source #

Compare the underlying pointers of two mutable arrays.

sameSmallArray# :: forall {l :: Levity} (a :: TYPE ('BoxedRep l)). SmallArray# a -> SmallArray# a -> Int# Source #

Compare the underlying pointers of two small arrays.

sameSmallMutableArray# :: forall {l :: Levity} s (a :: TYPE ('BoxedRep l)). SmallMutableArray# s a -> SmallMutableArray# s a -> Int# Source #

Compare the underlying pointers of two small mutable arrays.

sameByteArray# :: ByteArray# -> ByteArray# -> Int# Source #

Compare the pointers of two byte arrays.

sameMutableByteArray# :: MutableByteArray# s -> MutableByteArray# s -> Int# Source #

Compare the underlying pointers of two mutable byte arrays.

sameMVar# :: forall {l :: Levity} s (a :: TYPE ('BoxedRep l)). MVar# s a -> MVar# s a -> Int# Source #

Compare the underlying pointers of two MVar#s.

sameMutVar# :: forall {l :: Levity} s (a :: TYPE ('BoxedRep l)). MutVar# s a -> MutVar# s a -> Int# Source #

Compare the underlying pointers of two MutVar#s.

sameTVar# :: forall {l :: Levity} s (a :: TYPE ('BoxedRep l)). TVar# s a -> TVar# s a -> Int# Source #

Compare the underlying pointers of two TVar#s.

sameIOPort# :: forall {l :: Levity} s (a :: TYPE ('BoxedRep l)). IOPort# s a -> IOPort# s a -> Int# Source #

Compare the underlying pointers of two IOPort#s.

samePromptTag# :: PromptTag# a -> PromptTag# a -> Int# Source #

Compare the underlying pointers of two PromptTag#s.

Compat wrapper

atomicModifyMutVar# :: MutVar# s a -> (a -> b) -> State# s -> (# State# s, c #) Source #

An implementation of the old atomicModifyMutVar# primop in terms of the new atomicModifyMutVar2# primop, for backwards compatibility. The type of this function is a bit bogus. It's best to think of it as having type

atomicModifyMutVar#
  :: MutVar# s a
  -> (a -> (a, b))
  -> State# s
  -> (# State# s, b #)

but there may be code that uses this with other two-field record types.

Resize functions

Resizing arrays of boxed elements is currently handled in library space (rather than being a primop) since there is not an efficient way to grow arrays. However, resize operations may become primops in a future release of GHC.

resizeSmallMutableArray# Source #

Arguments

:: SmallMutableArray# s a

Array to resize

-> Int#

New size of array

-> a

Newly created slots initialized to this element. Only used when array is grown.

-> State# s 
-> (# State# s, SmallMutableArray# s a #) 

Resize a mutable array to new specified size. The returned SmallMutableArray# is either the original SmallMutableArray# resized in-place or, if not possible, a newly allocated SmallMutableArray# with the original content copied over.

To avoid undefined behaviour, the original SmallMutableArray# shall not be accessed anymore after a resizeSmallMutableArray# has been performed. Moreover, no reference to the old one should be kept in order to allow garbage collection of the original SmallMutableArray# in case a new SmallMutableArray# had to be allocated.

@since base-4.14.0.0

Fusion

build :: (forall b. (a -> b -> b) -> b -> b) -> [a] Source #

A list producer that can be fused with foldr. This function is merely

   build g = g (:) []

but GHC's simplifier will transform an expression of the form foldr k z (build g), which may arise after inlining, to g k z, which avoids producing an intermediate list.

augment :: (forall b. (a -> b -> b) -> b -> b) -> [a] -> [a] Source #

A list producer that can be fused with foldr. This function is merely

   augment g xs = g (:) xs

but GHC's simplifier will transform an expression of the form foldr k z (augment g xs), which may arise after inlining, to g k (foldr k z xs), which avoids producing an intermediate list.

Overloaded lists

class IsList l where Source #

The IsList class and its methods are intended to be used in conjunction with the OverloadedLists extension.

@since base-4.7.0.0

Minimal complete definition

fromList, toList

Associated Types

type Item l Source #

The Item type function returns the type of items of the structure l.

Methods

fromList :: [Item l] -> l Source #

The fromList function constructs the structure l from the given list of Item l

fromListN :: Int -> [Item l] -> l Source #

The fromListN function takes the input list's length and potentially uses it to construct the structure l more efficiently compared to fromList. If the given number does not equal to the input list's length the behaviour of fromListN is not specified.

fromListN (length xs) xs == fromList xs

toList :: l -> [Item l] Source #

The toList function extracts a list of Item l from the structure l. It should satisfy fromList . toList = id.

Instances

Instances details
IsList Version Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item Version 
Instance details

Defined in GHC.Internal.IsList

IsList CallStack Source #

Be aware that 'fromList . toList = id' only for unfrozen CallStacks, since toList removes frozenness information.

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item CallStack 
Instance details

Defined in GHC.Internal.IsList

IsList (NonEmpty a) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item (NonEmpty a) 
Instance details

Defined in GHC.Internal.IsList

type Item (NonEmpty a) = a
IsList (ZipList a) Source #

@since base-4.15.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item (ZipList a) 
Instance details

Defined in GHC.Internal.IsList

type Item (ZipList a) = a

Methods

fromList :: [Item (ZipList a)] -> ZipList a Source #

fromListN :: Int -> [Item (ZipList a)] -> ZipList a Source #

toList :: ZipList a -> [Item (ZipList a)] Source #

IsList [a] Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item [a] 
Instance details

Defined in GHC.Internal.IsList

type Item [a] = a

Methods

fromList :: [Item [a]] -> [a] Source #

fromListN :: Int -> [Item [a]] -> [a] Source #

toList :: [a] -> [Item [a]] Source #

Transform comprehensions

newtype Down a Source #

The Down type allows you to reverse sort order conveniently. A value of type Down a contains a value of type a (represented as Down a).

If a has an Ord instance associated with it then comparing two values thus wrapped will give you the opposite of their normal sort order. This is particularly useful when sorting in generalised list comprehensions, as in: then sortWith by Down x.

>>> compare True False
GT
>>> compare (Down True) (Down False)
LT

If a has a Bounded instance then the wrapped instance also respects the reversed ordering by exchanging the values of minBound and maxBound.

>>> minBound :: Int
-9223372036854775808
>>> minBound :: Down Int
Down 9223372036854775807

All other instances of Down a behave as they do for a.

@since base-4.6.0.0

Constructors

Down 

Fields

Instances

Instances details
Applicative Down Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

pure :: a -> Down a Source #

(<*>) :: Down (a -> b) -> Down a -> Down b Source #

liftA2 :: (a -> b -> c) -> Down a -> Down b -> Down c Source #

(*>) :: Down a -> Down b -> Down b Source #

(<*) :: Down a -> Down b -> Down a Source #

Functor Down Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

fmap :: (a -> b) -> Down a -> Down b Source #

(<$) :: a -> Down b -> Down a Source #

Monad Down Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(>>=) :: Down a -> (a -> Down b) -> Down b Source #

(>>) :: Down a -> Down b -> Down b Source #

return :: a -> Down a Source #

MonadFix Down Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Down a) -> Down a Source #

Foldable Down Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Down m -> m Source #

foldMap :: Monoid m => (a -> m) -> Down a -> m Source #

foldMap' :: Monoid m => (a -> m) -> Down a -> m Source #

foldr :: (a -> b -> b) -> b -> Down a -> b Source #

foldr' :: (a -> b -> b) -> b -> Down a -> b Source #

foldl :: (b -> a -> b) -> b -> Down a -> b Source #

foldl' :: (b -> a -> b) -> b -> Down a -> b Source #

foldr1 :: (a -> a -> a) -> Down a -> a Source #

foldl1 :: (a -> a -> a) -> Down a -> a Source #

toList :: Down a -> [a] Source #

null :: Down a -> Bool Source #

length :: Down a -> Int Source #

elem :: Eq a => a -> Down a -> Bool Source #

maximum :: Ord a => Down a -> a Source #

minimum :: Ord a => Down a -> a Source #

sum :: Num a => Down a -> a Source #

product :: Num a => Down a -> a Source #

Traversable Down Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Down a -> f (Down b) Source #

sequenceA :: Applicative f => Down (f a) -> f (Down a) Source #

mapM :: Monad m => (a -> m b) -> Down a -> m (Down b) Source #

sequence :: Monad m => Down (m a) -> m (Down a) Source #

Generic1 Down Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Down

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Down = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Down a -> Rep1 Down a Source #

to1 :: Rep1 Down a -> Down a Source #

Monoid a => Monoid (Down a) Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

mempty :: Down a Source #

mappend :: Down a -> Down a -> Down a Source #

mconcat :: [Down a] -> Down a Source #

Semigroup a => Semigroup (Down a) Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(<>) :: Down a -> Down a -> Down a Source #

sconcat :: NonEmpty (Down a) -> Down a Source #

stimes :: Integral b => b -> Down a -> Down a Source #

Bits a => Bits (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(.&.) :: Down a -> Down a -> Down a Source #

(.|.) :: Down a -> Down a -> Down a Source #

xor :: Down a -> Down a -> Down a Source #

complement :: Down a -> Down a Source #

shift :: Down a -> Int -> Down a Source #

rotate :: Down a -> Int -> Down a Source #

zeroBits :: Down a Source #

bit :: Int -> Down a Source #

setBit :: Down a -> Int -> Down a Source #

clearBit :: Down a -> Int -> Down a Source #

complementBit :: Down a -> Int -> Down a Source #

testBit :: Down a -> Int -> Bool Source #

bitSizeMaybe :: Down a -> Maybe Int Source #

bitSize :: Down a -> Int Source #

isSigned :: Down a -> Bool Source #

shiftL :: Down a -> Int -> Down a Source #

unsafeShiftL :: Down a -> Int -> Down a Source #

shiftR :: Down a -> Int -> Down a Source #

unsafeShiftR :: Down a -> Int -> Down a Source #

rotateL :: Down a -> Int -> Down a Source #

rotateR :: Down a -> Int -> Down a Source #

popCount :: Down a -> Int Source #

FiniteBits a => FiniteBits (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Data a => Data (Down a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) Source #

toConstr :: Down a -> Constr Source #

dataTypeOf :: Down a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) Source #

Bounded a => Bounded (Down a) Source #

Swaps minBound and maxBound of the underlying type.

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

(Enum a, Bounded a, Eq a) => Enum (Down a) Source #

Swaps succ and pred of the underlying type.

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

succ :: Down a -> Down a Source #

pred :: Down a -> Down a Source #

toEnum :: Int -> Down a Source #

fromEnum :: Down a -> Int Source #

enumFrom :: Down a -> [Down a] Source #

enumFromThen :: Down a -> Down a -> [Down a] Source #

enumFromTo :: Down a -> Down a -> [Down a] Source #

enumFromThenTo :: Down a -> Down a -> Down a -> [Down a] Source #

Floating a => Floating (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

pi :: Down a Source #

exp :: Down a -> Down a Source #

log :: Down a -> Down a Source #

sqrt :: Down a -> Down a Source #

(**) :: Down a -> Down a -> Down a Source #

logBase :: Down a -> Down a -> Down a Source #

sin :: Down a -> Down a Source #

cos :: Down a -> Down a Source #

tan :: Down a -> Down a Source #

asin :: Down a -> Down a Source #

acos :: Down a -> Down a Source #

atan :: Down a -> Down a Source #

sinh :: Down a -> Down a Source #

cosh :: Down a -> Down a Source #

tanh :: Down a -> Down a Source #

asinh :: Down a -> Down a Source #

acosh :: Down a -> Down a Source #

atanh :: Down a -> Down a Source #

log1p :: Down a -> Down a Source #

expm1 :: Down a -> Down a Source #

log1pexp :: Down a -> Down a Source #

log1mexp :: Down a -> Down a Source #

RealFloat a => RealFloat (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Storable a => Storable (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

sizeOf :: Down a -> Int Source #

alignment :: Down a -> Int Source #

peekElemOff :: Ptr (Down a) -> Int -> IO (Down a) Source #

pokeElemOff :: Ptr (Down a) -> Int -> Down a -> IO () Source #

peekByteOff :: Ptr b -> Int -> IO (Down a) Source #

pokeByteOff :: Ptr b -> Int -> Down a -> IO () Source #

peek :: Ptr (Down a) -> IO (Down a) Source #

poke :: Ptr (Down a) -> Down a -> IO () Source #

Generic (Down a) Source # 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (Down a)

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (Down a) = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Down a -> Rep (Down a) x Source #

to :: Rep (Down a) x -> Down a Source #

Ix a => Ix (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

range :: (Down a, Down a) -> [Down a] Source #

index :: (Down a, Down a) -> Down a -> Int Source #

unsafeIndex :: (Down a, Down a) -> Down a -> Int Source #

inRange :: (Down a, Down a) -> Down a -> Bool Source #

rangeSize :: (Down a, Down a) -> Int Source #

unsafeRangeSize :: (Down a, Down a) -> Int Source #

Num a => Num (Down a) Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(+) :: Down a -> Down a -> Down a Source #

(-) :: Down a -> Down a -> Down a Source #

(*) :: Down a -> Down a -> Down a Source #

negate :: Down a -> Down a Source #

abs :: Down a -> Down a Source #

signum :: Down a -> Down a Source #

fromInteger :: Integer -> Down a Source #

Read a => Read (Down a) Source #

This instance would be equivalent to the derived instances of the Down newtype if the getDown field were removed

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Fractional a => Fractional (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(/) :: Down a -> Down a -> Down a Source #

recip :: Down a -> Down a Source #

fromRational :: Rational -> Down a Source #

Real a => Real (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

RealFrac a => RealFrac (Down a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

properFraction :: Integral b => Down a -> (b, Down a) Source #

truncate :: Integral b => Down a -> b Source #

round :: Integral b => Down a -> b Source #

ceiling :: Integral b => Down a -> b Source #

floor :: Integral b => Down a -> b Source #

Show a => Show (Down a) Source #

This instance would be equivalent to the derived instances of the Down newtype if the getDown field were removed

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

showsPrec :: Int -> Down a -> ShowS Source #

show :: Down a -> String Source #

showList :: [Down a] -> ShowS Source #

Eq a => Eq (Down a) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(==) :: Down a -> Down a -> Bool Source #

(/=) :: Down a -> Down a -> Bool Source #

Ord a => Ord (Down a) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

compare :: Down a -> Down a -> Ordering Source #

(<) :: Down a -> Down a -> Bool Source #

(<=) :: Down a -> Down a -> Bool Source #

(>) :: Down a -> Down a -> Bool Source #

(>=) :: Down a -> Down a -> Bool Source #

max :: Down a -> Down a -> Down a Source #

min :: Down a -> Down a -> Down a Source #

type Rep1 Down Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Down = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep (Down a) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (Down a) = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

groupWith :: Ord b => (a -> b) -> [a] -> [[a]] Source #

The groupWith function uses the user supplied function which projects an element out of every list element in order to first sort the input list and then to form groups by equality on these projected elements

sortWith :: Ord b => (a -> b) -> [a] -> [a] Source #

The sortWith function sorts a list of elements using the user supplied function to project something out of each element

In general if the user supplied function is expensive to compute then you should probably be using sortOn, as it only needs to compute it once for each element. sortWith, on the other hand must compute the mapping function for every comparison that it performs.

the :: Eq a => [a] -> a Source #

the ensures that all the elements of the list are identical and then returns that unique element

Strings

Overloaded string literals

class IsString a where Source #

IsString is used in combination with the -XOverloadedStrings language extension to convert the literals to different string types.

For example, if you use the text package, you can say

{-# LANGUAGE OverloadedStrings  #-}

myText = "hello world" :: Text

Internally, the extension will convert this to the equivalent of

myText = fromString @Text ("hello world" :: String)

Note: You can use fromString in normal code as well, but the usual performance/memory efficiency problems with String apply.

Methods

fromString :: String -> a Source #

Instances

Instances details
IsString a => IsString (Identity a) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.String

a ~ Char => IsString [a] Source #

(a ~ Char) context was introduced in 4.9.0.0

@since base-2.01

Instance details

Defined in GHC.Internal.Data.String

Methods

fromString :: String -> [a] Source #

IsString a => IsString (Const a b) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.String

Methods

fromString :: String -> Const a b Source #

CString

unpackFoldrCString# :: Addr# -> (Char -> a -> a) -> a -> a Source #

cstringLength# :: Addr# -> Int# Source #

Compute the length of a NUL-terminated string. This address must refer to immutable memory. GHC includes a built-in rule for constant folding when the argument is a statically-known literal. That is, a core-to-core pass reduces the expression cstringLength# "hello"# to the constant 5#.

Debugging

Breakpoints

breakpoint :: a -> a Source #

Event logging

traceEvent :: String -> IO () Source #

Deprecated: Use traceEvent or traceEventIO

The call stack

currentCallStack :: IO [String] Source #

Returns a [String] representing the current call stack. This can be useful for debugging.

The implementation uses the call-stack simulation maintained by the profiler, so it only works if the program was compiled with -prof and contains suitable SCC annotations (e.g. by using -fprof-auto). Otherwise, the list returned is likely to be empty or uninformative.

@since base-4.5.0.0

Ids with special behaviour

inline :: a -> a Source #

The call inline f arranges that f is inlined, regardless of its size. More precisely, the call inline f rewrites to the right-hand side of f's definition. This allows the programmer to control inlining from a particular call site rather than the definition site of the function (c.f. INLINE pragmas).

This inlining occurs regardless of the argument to the call or the size of f's definition; it is unconditional. The main caveat is that f's definition must be visible to the compiler; it is therefore recommended to mark the function with an INLINABLE pragma at its definition so that GHC guarantees to record its unfolding regardless of size.

If no inlining takes place, the inline function expands to the identity function in Phase zero, so its use imposes no overhead.

noinline :: a -> a Source #

The call noinline f arranges that f will not be inlined. It is removed during CorePrep so that its use imposes no overhead (besides the fact that it blocks inlining.)

lazy :: a -> a Source #

The lazy function restrains strictness analysis a little. The call lazy e means the same as e, but lazy has a magical property so far as strictness analysis is concerned: it is lazy in its first argument, even though its semantics is strict. After strictness analysis has run, calls to lazy are inlined to be the identity function.

This behaviour is occasionally useful when controlling evaluation order. Notably, lazy is used in the library definition of par:

par :: a -> b -> b
par x y = case (par# x) of _ -> lazy y

If lazy were not lazy, par would look strict in y which would defeat the whole purpose of par.

oneShot :: forall {q :: RuntimeRep} {r :: RuntimeRep} (a :: TYPE q) (b :: TYPE r). (a -> b) -> a -> b Source #

The oneShot function can be used to give a hint to the compiler that its argument will be called at most once, which may (or may not) enable certain optimizations. It can be useful to improve the performance of code in continuation passing style.

If oneShot is used wrongly, then it may be that computations whose result that would otherwise be shared are re-evaluated every time they are used. Otherwise, the use of oneShot is safe.

oneShot is representation-polymorphic: the type variables may refer to lifted or unlifted types.

considerAccessible :: Bool Source #

Semantically, considerAccessible = True. But it has special meaning to the pattern-match checker, which will never flag the clause in which considerAccessible occurs as a guard as redundant or inaccessible. Example:

case (x, x) of
  (True,  True)  -> 1
  (False, False) -> 2
  (True,  False) -> 3 -- Warning: redundant

The pattern-match checker will warn here that the third clause is redundant. It will stop doing so if the clause is adorned with considerAccessible:

case (x, x) of
  (True,  True)  -> 1
  (False, False) -> 2
  (True,  False) | considerAccessible -> 3 -- No warning

Put considerAccessible as the last statement of the guard to avoid get confusing results from the pattern-match checker, which takes "consider accessible" by word.

SpecConstr annotations

data SpecConstrAnnotation Source #

Deprecated, use SPEC directly instead.

Annotating a type with NoSpecConstr will make SpecConstr not specialise for arguments of that type, e. g., {-# ANN type SPEC ForceSpecConstr #-}.

Instances

Instances details
Data SpecConstrAnnotation Source #

@since base-4.3.0.0

Instance details

Defined in GHC.Internal.Exts

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation Source #

toConstr :: SpecConstrAnnotation -> Constr Source #

dataTypeOf :: SpecConstrAnnotation -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) Source #

gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source #

Eq SpecConstrAnnotation Source #

@since base-4.3.0.0

Instance details

Defined in GHC.Internal.Exts

data SPEC Source #

SPEC is used by GHC in the SpecConstr pass in order to inform the compiler when to be particularly aggressive. In particular, it tells GHC to specialize regardless of size or the number of specializations. However, not all loops fall into this category.

Libraries can specify this by using SPEC data type to inform which loops should be aggressively specialized. For example, instead of

loop x where loop arg = ...

write

loop SPEC x where loop !_ arg = ...

There is no semantic difference between SPEC and SPEC2, we just need a type with two constructors lest it is optimised away before SpecConstr.

This type is reexported from GHC.Exts since GHC 9.0 and base-4.15. For compatibility with earlier releases import it from GHC.Types in ghc-prim package.

Since: ghc-prim-0.3.1.0

Constructors

SPEC 
SPEC2 

Coercions

Safe coercions

These are available from the Trustworthy module Data.Coerce as well.

@since base-4.7.0.0

coerce :: forall {k :: RuntimeRep} (a :: TYPE k) (b :: TYPE k). Coercible a b => a -> b Source #

The function coerce allows you to safely convert between values of types that have the same representation with no run-time overhead. In the simplest case you can use it instead of a newtype constructor, to go from the newtype's concrete type to the abstract type. But it also works in more complicated settings, e.g. converting a list of newtypes to a list of concrete types.

When used in conversions involving a newtype wrapper, make sure the newtype constructor is in scope.

This function is representation-polymorphic, but the RuntimeRep type argument is marked as Inferred, meaning that it is not available for visible type application. This means the typechecker will accept coerce @Int @Age 42.

Examples

Expand
>>> newtype TTL = TTL Int deriving (Eq, Ord, Show)
>>> newtype Age = Age Int deriving (Eq, Ord, Show)
>>> coerce (Age 42) :: TTL
TTL 42
>>> coerce (+ (1 :: Int)) (Age 42) :: TTL
TTL 43
>>> coerce (map (+ (1 :: Int))) [Age 42, Age 24] :: [TTL]
[TTL 43,TTL 25]

Very unsafe coercion

unsafeCoerce# :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep) (a :: TYPE r1) (b :: TYPE r2). a -> b Source #

Highly, terribly dangerous coercion from one representation type to another. Misuse of this function can invite the garbage collector to trounce upon your data and then laugh in your face. You don't want this function. Really.

Casting class dictionaries with single methods

class WithDict cls meth where Source #

The constraint WithDict cls meth can be solved when evidence for the constraint cls can be provided in the form of a dictionary of type meth. This requires cls to be a class constraint whose single method has type meth.

For more (important) details on how this works, see Note [withDict] in GHC.Tc.Instance.Class in GHC.

Since: ghc-prim-0.9.0

Methods

withDict :: forall {rr :: RuntimeRep} (r :: TYPE rr). meth -> (cls => r) -> r Source #

Converting ADTs to constructor tags

class DataToTag (a :: TYPE ('BoxedRep lev)) where Source #

dataToTag# evaluates its argument and returns the index (starting at zero) of the constructor used to produce that argument. Any algebraic data type with all of its constructors in scope may be used with dataToTag#.

>>> dataToTag# (Left ())
0#
>>> dataToTag# (Right undefined)
1#

Methods

dataToTag# :: a -> Int# Source #

The maximum tuple size