Safe Haskell | None |
---|---|
Language | GHC2021 |
Synopsis
- data Type
- data TyLit
- type KindOrType = Type
- type Kind = Type
- type RuntimeRepType = Type
- type LevityType = Type
- type KnotTied (ty :: k) = ty
- type PredType = Type
- type ThetaType = [PredType]
- type FRRType = Type
- data ForAllTyFlag where
- Invisible !Specificity
- Required
- pattern Inferred :: ForAllTyFlag
- pattern Specified :: ForAllTyFlag
- data FunTyFlag
- data Coercion
- = Refl Type
- | GRefl Role Type MCoercionN
- | TyConAppCo Role TyCon [Coercion]
- | AppCo Coercion CoercionN
- | ForAllCo { }
- | FunCo { }
- | CoVarCo CoVar
- | AxiomCo CoAxiomRule [Coercion]
- | UnivCo { }
- | SymCo Coercion
- | TransCo Coercion Coercion
- | SelCo CoSel Coercion
- | LRCo LeftOrRight CoercionN
- | InstCo Coercion CoercionN
- | KindCo Coercion
- | SubCo CoercionN
- | HoleCo CoercionHole
- data CoSel
- data FunSel
- data UnivCoProvenance
- data CoercionHole = CoercionHole {}
- coHoleCoVar :: CoercionHole -> CoVar
- setCoHoleCoVar :: CoercionHole -> CoVar -> CoercionHole
- isHeteroKindCoHole :: CoercionHole -> Bool
- type CoercionN = Coercion
- type CoercionR = Coercion
- type CoercionP = Coercion
- type KindCoercion = CoercionN
- data MCoercion
- type MCoercionR = MCoercion
- type MCoercionN = MCoercion
- mkNakedTyConTy :: TyCon -> Type
- mkTyVarTy :: TyVar -> Type
- mkTyVarTys :: [TyVar] -> [Type]
- mkTyCoVarTy :: TyCoVar -> Type
- mkTyCoVarTys :: [TyCoVar] -> [Type]
- mkFunTy :: HasDebugCallStack => FunTyFlag -> Mult -> Type -> Type -> Type
- mkNakedFunTy :: FunTyFlag -> Kind -> Kind -> Kind
- mkVisFunTy :: HasDebugCallStack => Mult -> Type -> Type -> Type
- mkScaledFunTys :: HasDebugCallStack => [Scaled Type] -> Type -> Type
- mkInvisFunTy :: HasDebugCallStack => Type -> Type -> Type
- mkInvisFunTys :: HasDebugCallStack => [Type] -> Type -> Type
- tcMkVisFunTy :: Mult -> Type -> Type -> Type
- tcMkInvisFunTy :: TypeOrConstraint -> Type -> Type -> Type
- tcMkScaledFunTy :: Scaled Type -> Type -> Type
- tcMkScaledFunTys :: [Scaled Type] -> Type -> Type
- mkForAllTy :: ForAllTyBinder -> Type -> Type
- mkForAllTys :: [ForAllTyBinder] -> Type -> Type
- mkInvisForAllTys :: [InvisTVBinder] -> Type -> Type
- mkPiTy :: HasDebugCallStack => PiTyBinder -> Type -> Type
- mkPiTys :: HasDebugCallStack => [PiTyBinder] -> Type -> Type
- mkVisFunTyMany :: HasDebugCallStack => Type -> Type -> Type
- mkVisFunTysMany :: [Type] -> Type -> Type
- nonDetCmpTyLit :: TyLit -> TyLit -> Ordering
- cmpTyLit :: TyLit -> TyLit -> Ordering
- pickLR :: LeftOrRight -> (a, a) -> a
- data TyCoFolder env a = TyCoFolder {
- tcf_view :: Type -> Maybe Type
- tcf_tyvar :: env -> TyVar -> a
- tcf_covar :: env -> CoVar -> a
- tcf_hole :: env -> CoercionHole -> a
- tcf_tycobinder :: env -> TyCoVar -> ForAllTyFlag -> env
- foldTyCo :: Monoid a => TyCoFolder env a -> env -> (Type -> a, [Type] -> a, Coercion -> a, [Coercion] -> a)
- noView :: Type -> Maybe Type
- typeSize :: Type -> Int
- typesSize :: [Type] -> Int
- coercionSize :: Coercion -> Int
- data Scaled a = Scaled !Mult a
- scaledMult :: Scaled a -> Mult
- scaledThing :: Scaled a -> a
- mapScaledType :: (Type -> Type) -> Scaled Type -> Scaled Type
- type Mult = Type
Types
TyVarTy Var | Vanilla type or kind variable (*never* a coercion variable) |
AppTy Type Type | Type application to something other than a 1) Function: must not be a 2) Argument type |
TyConApp TyCon [KindOrType] | Application of a 1) Type constructor being applied to. 2) Type arguments. Might not have enough type arguments here to saturate the constructor. Even type synonyms are not necessarily saturated; for example unsaturated type synonyms can appear as the right hand side of a type synonym. |
ForAllTy !ForAllTyBinder Type | |
FunTy | FUN m t1 t2 Very common, so an important special case See Note [Function types] |
LitTy TyLit | Type literals are similar to type constructors. |
CastTy Type KindCoercion | A kind cast. The coercion is always nominal. INVARIANT: The cast is never reflexive (EQ2) INVARIANT: The Type is not a CastTy (use TransCo instead) (EQ3) INVARIANT: The Type is not a ForAllTy over a tyvar (EQ4) See Note [Respecting definitional equality] |
CoercionTy Coercion | Injection of a Coercion into a type This should only ever be used in the RHS of an AppTy, in the list of a TyConApp, when applying a promoted GADT data constructor |
Instances
Outputable Type Source # | |
Data Type Source # | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type # dataTypeOf :: Type -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) # gmapT :: (forall b. Data b => b -> b) -> Type -> Type # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # | |
Eq (DeBruijn Type) Source # | |
Instances
Outputable TyLit Source # | |
Data TyLit Source # | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit # dataTypeOf :: TyLit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # | |
Eq TyLit Source # | |
type KindOrType = Type Source #
The key representation of types within the compiler
type RuntimeRepType = Type Source #
Type synonym used for types of kind RuntimeRep.
type LevityType = Type Source #
Type synonym used for types of kind Levity.
type KnotTied (ty :: k) = ty Source #
A type labeled KnotTied
might have knot-tied tycons in it. See
Note [Type checking recursive type and class declarations] in
GHC.Tc.TyCl
A type of the form p
of constraint kind represents a value whose type is
the Haskell predicate p
, where a predicate is what occurs before
the =>
in a Haskell type.
We use PredType
as documentation to mark those types that we guarantee to
have this kind.
It can be expanded into its representation, but:
- The type checker must treat it as opaque
- The rest of the compiler treats it as transparent
Consider these examples:
f :: (Eq a) => a -> Int g :: (?x :: Int -> Int) => a -> Int h :: (r\l) => {r} => {l::Int | r}
Here the Eq a
and ?x :: Int -> Int
and rl
are all called "predicates"
data ForAllTyFlag Source #
ForAllTyFlag
Is something required to appear in source Haskell (Required
),
permitted by request (Specified
) (visible type application), or
prohibited entirely from appearing in source Haskell (Inferred
)?
See Note [VarBndrs, ForAllTyBinders, TyConBinders, and visibility] in GHC.Core.TyCo.Rep
pattern Inferred :: ForAllTyFlag | |
pattern Specified :: ForAllTyFlag |
Instances
The non-dependent version of ForAllTyFlag
.
See Note [FunTyFlag]
Appears here partly so that it's together with its friends ForAllTyFlag
and ForallVisFlag, but also because it is used in IfaceType, rather
early in the compilation chain
Instances
Binary FunTyFlag Source # | |
Outputable FunTyFlag Source # | |
Data FunTyFlag Source # | |
Defined in GHC.Types.Var gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunTyFlag -> c FunTyFlag # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunTyFlag # toConstr :: FunTyFlag -> Constr # dataTypeOf :: FunTyFlag -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunTyFlag) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunTyFlag) # gmapT :: (forall b. Data b => b -> b) -> FunTyFlag -> FunTyFlag # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunTyFlag -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunTyFlag -> r # gmapQ :: (forall d. Data d => d -> u) -> FunTyFlag -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunTyFlag -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunTyFlag -> m FunTyFlag # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunTyFlag -> m FunTyFlag # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunTyFlag -> m FunTyFlag # | |
Eq FunTyFlag Source # | |
Ord FunTyFlag Source # | |
Defined in GHC.Types.Var |
Coercions
A Coercion
is concrete evidence of the equality/convertibility
of two types.
Refl Type | |
GRefl Role Type MCoercionN | |
TyConAppCo Role TyCon [Coercion] | |
AppCo Coercion CoercionN | |
ForAllCo | |
| |
FunCo | |
CoVarCo CoVar | |
AxiomCo CoAxiomRule [Coercion] | |
UnivCo | |
SymCo Coercion | |
TransCo Coercion Coercion | |
SelCo CoSel Coercion | |
LRCo LeftOrRight CoercionN | |
InstCo Coercion CoercionN | |
KindCo Coercion | |
SubCo CoercionN | |
HoleCo CoercionHole | See Note [Coercion holes] Only present during typechecking |
Instances
Outputable Coercion Source # | |
Data Coercion Source # | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Coercion -> c Coercion # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Coercion # toConstr :: Coercion -> Constr # dataTypeOf :: Coercion -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Coercion) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Coercion) # gmapT :: (forall b. Data b => b -> b) -> Coercion -> Coercion # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion # | |
Eq (DeBruijn Coercion) Source # | |
Instances
NFData CoSel Source # | |
Defined in GHC.Core.TyCo.Rep | |
Binary CoSel Source # | |
Outputable CoSel Source # | |
Data CoSel Source # | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CoSel -> c CoSel # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CoSel # dataTypeOf :: CoSel -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CoSel) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CoSel) # gmapT :: (forall b. Data b => b -> b) -> CoSel -> CoSel # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CoSel -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CoSel -> r # gmapQ :: (forall d. Data d => d -> u) -> CoSel -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CoSel -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CoSel -> m CoSel # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CoSel -> m CoSel # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CoSel -> m CoSel # | |
Eq CoSel Source # | |
Ord CoSel Source # | |
Instances
Outputable FunSel Source # | |
Data FunSel Source # | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunSel -> c FunSel # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunSel # toConstr :: FunSel -> Constr # dataTypeOf :: FunSel -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunSel) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunSel) # gmapT :: (forall b. Data b => b -> b) -> FunSel -> FunSel # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunSel -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunSel -> r # gmapQ :: (forall d. Data d => d -> u) -> FunSel -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunSel -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunSel -> m FunSel # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunSel -> m FunSel # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunSel -> m FunSel # | |
Eq FunSel Source # | |
Ord FunSel Source # | |
data UnivCoProvenance Source #
For simplicity, we have just one UnivCo that represents a coercion from
some type to some other type, with (in general) no restrictions on the
type. The UnivCoProvenance specifies more exactly what the coercion really
is and why a program should (or shouldn't!) trust the coercion.
It is reasonable to consider each constructor of UnivCoProvenance
as a totally independent coercion form; their only commonality is
that they don't tell you what types they coercion between. (That info
is in the UnivCo
constructor of Coercion
.
PhantomProv | See Note [Phantom coercions]. Only in Phantom roled coercions |
ProofIrrelProv | From the fact that any two coercions are considered equivalent. See Note [ProofIrrelProv]. Can be used in Nominal or Representational coercions |
PluginProv String | From a plugin, which asserts that this coercion is sound. The string and the variable set are for the use by the plugin. |
Instances
data CoercionHole Source #
A coercion to be filled in by the type-checker. See Note [Coercion holes]
Instances
Uniquable CoercionHole Source # | |
Defined in GHC.Core.TyCo.Rep getUnique :: CoercionHole -> Unique Source # | |
Outputable CoercionHole Source # | |
Defined in GHC.Core.TyCo.Rep ppr :: CoercionHole -> SDoc Source # | |
Data CoercionHole Source # | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CoercionHole -> c CoercionHole # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CoercionHole # toConstr :: CoercionHole -> Constr # dataTypeOf :: CoercionHole -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CoercionHole) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CoercionHole) # gmapT :: (forall b. Data b => b -> b) -> CoercionHole -> CoercionHole # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CoercionHole -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CoercionHole -> r # gmapQ :: (forall d. Data d => d -> u) -> CoercionHole -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CoercionHole -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole # |
coHoleCoVar :: CoercionHole -> CoVar Source #
setCoHoleCoVar :: CoercionHole -> CoVar -> CoercionHole Source #
type KindCoercion = CoercionN Source #
A semantically more meaningful type to represent what may or may not be a
useful Coercion
.
Instances
Outputable MCoercion Source # | |
Data MCoercion Source # | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MCoercion -> c MCoercion # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MCoercion # toConstr :: MCoercion -> Constr # dataTypeOf :: MCoercion -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c MCoercion) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MCoercion) # gmapT :: (forall b. Data b => b -> b) -> MCoercion -> MCoercion # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MCoercion -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MCoercion -> r # gmapQ :: (forall d. Data d => d -> u) -> MCoercion -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MCoercion -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion # |
type MCoercionR = MCoercion Source #
type MCoercionN = MCoercion Source #
Functions over types
mkNakedTyConTy :: TyCon -> Type Source #
mkNakedTyConTy
creates a nullary TyConApp
. In general you
should rather use mkTyConTy
, which picks the shared
nullary TyConApp from inside the TyCon (via tyConNullaryTy. But
we have to build the TyConApp tc [] in that TyCon field; that's
what mkNakedTyConTy
is for.
mkTyVarTys :: [TyVar] -> [Type] Source #
mkTyCoVarTy :: TyCoVar -> Type Source #
mkTyCoVarTys :: [TyCoVar] -> [Type] Source #
mkVisFunTy :: HasDebugCallStack => Mult -> Type -> Type -> Type Source #
mkScaledFunTys :: HasDebugCallStack => [Scaled Type] -> Type -> Type Source #
mkInvisFunTy :: HasDebugCallStack => Type -> Type -> Type infixr 3 Source #
mkInvisFunTys :: HasDebugCallStack => [Type] -> Type -> Type Source #
tcMkInvisFunTy :: TypeOrConstraint -> Type -> Type -> Type Source #
mkForAllTy :: ForAllTyBinder -> Type -> Type Source #
Like mkTyCoForAllTy
, but does not check the occurrence of the binder
See Note [Unused coercion variable in ForAllTy]
mkForAllTys :: [ForAllTyBinder] -> Type -> Type Source #
Wraps foralls over the type using the provided TyCoVar
s from left to right
mkInvisForAllTys :: [InvisTVBinder] -> Type -> Type Source #
Wraps foralls over the type using the provided InvisTVBinder
s from left to right
mkPiTy :: HasDebugCallStack => PiTyBinder -> Type -> Type Source #
mkPiTys :: HasDebugCallStack => [PiTyBinder] -> Type -> Type Source #
mkVisFunTyMany :: HasDebugCallStack => Type -> Type -> Type infixr 3 Source #
Make nested arrow types | Special, common, case: Arrow type with mult Many
Functions over coercions
pickLR :: LeftOrRight -> (a, a) -> a Source #
Analyzing types
data TyCoFolder env a Source #
TyCoFolder | |
|
foldTyCo :: Monoid a => TyCoFolder env a -> env -> (Type -> a, [Type] -> a, Coercion -> a, [Coercion] -> a) Source #
Sizes
coercionSize :: Coercion -> Int Source #
Multiplicities
A shorthand for data with an attached Mult
element (the multiplicity).
Instances
Outputable a => Outputable (Scaled a) Source # | |
Data a => Data (Scaled a) Source # | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Scaled a -> c (Scaled a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Scaled a) # toConstr :: Scaled a -> Constr # dataTypeOf :: Scaled a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Scaled a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Scaled a)) # gmapT :: (forall b. Data b => b -> b) -> Scaled a -> Scaled a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Scaled a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Scaled a -> r # gmapQ :: (forall d. Data d => d -> u) -> Scaled a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Scaled a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) # |
scaledMult :: Scaled a -> Mult Source #
scaledThing :: Scaled a -> a Source #
mapScaledType :: (Type -> Type) -> Scaled Type -> Scaled Type Source #
Apply a function to both the Mult and the Type in a 'Scaled Type'
Mult is a type alias for Type.
Mult must contain Type because multiplicity variables are mere type variables (of kind Multiplicity) in Haskell. So the simplest implementation is to make Mult be Type.
Multiplicities can be formed with: - One: GHC.Types.One (= oneDataCon) - Many: GHC.Types.Many (= manyDataCon) - Multiplication: GHC.Types.MultMul (= multMulTyCon)
So that Mult feels a bit more structured, we provide pattern synonyms and smart constructors for these.